stack_op.h 8.5 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
S
sneaxiy 已提交
14

X
Xin Pan 已提交
15
#pragma once
S
sneaxiy 已提交
16

17
#include <memory>
X
Xin Pan 已提交
18
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
19 20 21 22 23 24
#include "paddle/fluid/platform/for_range.h"

#ifdef __NVCC__
#include <thrust/device_vector.h>
#include "paddle/fluid/framework/array.h"
#endif
X
Xin Pan 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

namespace paddle {
namespace operators {

class StackOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_GT(ctx->Inputs("X").size(), 0,
                      "Number of Inputs(X) must be larger than 0");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) must exist.");

    auto input_dims = ctx->GetInputsDim("X");
    for (size_t i = 1; i < input_dims.size(); ++i) {
      PADDLE_ENFORCE_EQ(input_dims[i], input_dims[0],
                        "Dims of all Inputs(X) must be the same");
    }

    // Only lod of X[0] would be shared with Y
    ctx->ShareLoD("X", /*->*/ "Y");

    int axis = ctx->Attrs().Get<int>("axis");
    int rank = input_dims[0].size();
    PADDLE_ENFORCE(
        axis >= -(rank + 1) && axis < rank + 1,
        "Attr(axis) must be inside [-(rank+1), rank+1), where rank = %d", rank);
    if (axis < 0) axis += (rank + 1);

54
    auto vec = framework::vectorize<int>(input_dims[0]);
X
Xin Pan 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    vec.insert(vec.begin() + axis, input_dims.size());
    ctx->SetOutputDim("Y", framework::make_ddim(vec));
  }
};

class StackOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input of stack op.").AsDuplicable();
    AddOutput("Y", "The output of stack op.");
    AddAttr<int>("axis",
                 "The axis along which all of the Inputs(X) should be stacked.")
        .SetDefault(0);
    AddComment(R"DOC(
      Stack Operator.

      Stack all of the Inputs(X) into one tensor along Attr(axis). The dims of all Inputs(X) must be the same.
    )DOC");
  }
};

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
template <typename VecXType, typename T>
struct StackFunctor {
  HOSTDEVICE StackFunctor(const VecXType &x, T *y, int n, int post)
      : x_(x), y_(y), n_(n), post_(post) {}

  HOSTDEVICE void operator()(int idx) {
    int i = idx / (n_ * post_);
    int which_x = idx / post_ - i * n_;
    int x_index = i * post_ + idx % post_;
    y_[idx] = x_[which_x][x_index];
  }

 private:
  VecXType x_;
  T *y_;
  int n_;
  int post_;
};

S
sneaxiy 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
template <typename VecDxType, typename T>
struct StackGradFunctor {
  HOSTDEVICE StackGradFunctor(const VecDxType &dx, const T *dy, int n, int post)
      : dx_(dx), dy_(dy), n_(n), post_(post) {}

  HOSTDEVICE void operator()(int idx) {
    int i = idx / (n_ * post_);
    int which_x = idx / post_ - i * n_;
    int x_index = i * post_ + idx % post_;
    dx_[which_x][x_index] = dy_[idx];
  }

 private:
  VecDxType dx_;
  const T *dy_;
  int n_;
  int post_;
};

114 115 116 117 118 119 120 121
template <typename DeviceContext, typename VecXType, typename T>
static inline void StackFunctorForRange(const DeviceContext &ctx,
                                        const VecXType &x, T *y, int total_num,
                                        int n, int post) {
  platform::ForRange<DeviceContext> for_range(ctx, total_num);
  for_range(StackFunctor<VecXType, T>(x, y, n, post));
}

S
sneaxiy 已提交
122 123 124 125 126 127 128 129 130
template <typename DeviceContext, typename VecDxType, typename T>
static inline void StackGradFunctorForRange(const DeviceContext &ctx,
                                            const VecDxType &dx, const T *dy,
                                            int total_num, int n, int post) {
  platform::ForRange<DeviceContext> for_range(ctx, total_num);
  for_range(StackGradFunctor<VecDxType, T>(dx, dy, n, post));
}

template <typename DeviceContext, typename T>
X
Xin Pan 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
class StackKernel : public framework::OpKernel<T> {
  using Tensor = framework::LoDTensor;

 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto x = ctx.MultiInput<Tensor>("X");
    auto *y = ctx.Output<Tensor>("Y");

    int axis = ctx.Attr<int>("axis");
    if (axis < 0) axis += (x[0]->dims().size() + 1);

    int n = static_cast<int>(x.size());
    auto *y_data = y->mutable_data<T>(ctx.GetPlace());
    std::vector<const T *> x_datas(n);
    for (int i = 0; i < n; i++) x_datas[i] = x[i]->data<T>();

    int pre = 1, post = 1;
    auto &dim = x[0]->dims();
    for (auto i = 0; i < axis; ++i) pre *= dim[i];
    for (auto i = axis; i < dim.size(); ++i) post *= dim[i];

S
sneaxiy 已提交
152
#ifdef __NVCC__
Y
Yihua Xu 已提交
153 154 155
    int total_num = pre * n * post;
    auto &dev_ctx = ctx.template device_context<DeviceContext>();

S
sneaxiy 已提交
156 157
    thrust::device_vector<const T *> device_x_vec(x_datas);
    auto x_data_arr = device_x_vec.data().get();
Y
Yihua Xu 已提交
158 159 160 161 162 163

    StackFunctorForRange(dev_ctx, x_data_arr, y_data, total_num, n, post);

    // Wait() must be called because device_x_vec may be destructed before
    // kernel ends
    dev_ctx.Wait();
S
sneaxiy 已提交
164
#else
S
sneaxiy 已提交
165
    auto x_data_arr = x_datas.data();
Y
Yihua Xu 已提交
166

Y
Yihua Xu 已提交
167 168 169 170 171 172 173 174 175 176
    size_t x_offset = 0;
    size_t y_offset = 0;
    for (int i = 0; i < pre; i++) {
      for (int j = 0; j < n; j++) {
        std::memcpy(y_data + y_offset, x_data_arr[j] + x_offset,
                    post * sizeof(T));
        y_offset += post;
      }
      x_offset += post;
    }
S
sneaxiy 已提交
177
#endif
X
Xin Pan 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  }
};

class StackOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@Grad) must exist.");

    int axis = ctx->Attrs().Get<int>("axis");
    auto dy_dim = ctx->GetInputDim(framework::GradVarName("Y"));
    int rank = dy_dim.size();
    PADDLE_ENFORCE(axis >= -rank && axis < rank,
                   "Attr(axis) must be inside [-rank, rank), where rank = %d",
                   rank);
    if (axis < 0) axis += rank;

    PADDLE_ENFORCE_EQ(ctx->Outputs(framework::GradVarName("X")).size(),
                      static_cast<size_t>(dy_dim[axis]),
                      "Number of Outputs(X@Grad) is wrong");
200
    auto vec = framework::vectorize<int>(dy_dim);
X
Xin Pan 已提交
201 202 203 204 205 206 207
    vec.erase(vec.begin() + axis);
    ctx->SetOutputsDim(
        framework::GradVarName("X"),
        std::vector<framework::DDim>(dy_dim[axis], framework::make_ddim(vec)));
  }
};

S
sneaxiy 已提交
208
class StackGradOpDescMaker : public framework::SingleGradOpDescMaker {
X
Xin Pan 已提交
209 210 211
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

S
sneaxiy 已提交
212
 protected:
X
Xin Pan 已提交
213 214 215 216 217 218 219 220 221 222
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("stack_grad");
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X", false));
    op->SetAttrMap(Attrs());
    return op;
  }
};

S
sneaxiy 已提交
223
template <typename DeviceContext, typename T>
X
Xin Pan 已提交
224 225 226 227 228 229 230 231 232 233 234 235
class StackGradKernel : public framework::OpKernel<T> {
  using Tensor = framework::LoDTensor;

 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto dx = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
    int axis = ctx.Attr<int>("axis");
    if (axis < 0) axis += dy->dims().size();

    int n = dy->dims()[axis];
    std::vector<T *> dx_datas(n);  // NOLINT
S
sneaxiy 已提交
236
    for (int i = 0; i < n; i++) {
X
Xin Pan 已提交
237
      dx_datas[i] = dx[i]->mutable_data<T>(ctx.GetPlace());
S
sneaxiy 已提交
238
    }
X
Xin Pan 已提交
239 240 241 242
    auto dy_data = dy->data<T>();

    int pre = 1;
    for (int i = 0; i < axis; ++i) pre *= dy->dims()[i];
S
sneaxiy 已提交
243 244 245 246 247
    int total_num = dy->numel();
    int post = total_num / (n * pre);

    auto &dev_ctx = ctx.template device_context<DeviceContext>();
#ifdef __NVCC__
S
sneaxiy 已提交
248 249
    thrust::device_vector<T *> device_dx_vec(dx_datas);
    auto dx_data_arr = device_dx_vec.data().get();
S
sneaxiy 已提交
250
#else
S
sneaxiy 已提交
251
    auto dx_data_arr = dx_datas.data();
S
sneaxiy 已提交
252
#endif
S
sneaxiy 已提交
253
    StackGradFunctorForRange(dev_ctx, dx_data_arr, dy_data, total_num, n, post);
S
sneaxiy 已提交
254
#ifdef __NVCC__
S
sneaxiy 已提交
255 256 257
    // Wait() must be called because device_dx_vec may be destructed before
    // kernel ends
    dev_ctx.Wait();
S
sneaxiy 已提交
258
#endif
X
Xin Pan 已提交
259 260 261 262 263
  }
};

}  // namespace operators
}  // namespace paddle