test_simple_rnn_op.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import math

from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import random
import sys
sys.path.append("./rnn")
from rnn_numpy import SimpleRNN
from convert import get_params_for_net

random.seed(2)
np.set_printoptions(threshold=np.inf)
paddle.enable_static()


class TestSimpleRNNOp(OpTest):
    def get_weight_names(self):
        weight_names = []
        for i in range(self.num_layers):
            for j in range(0, 2 * self.direction_num):
                weight_names.append("{}.weight_{}".format(i, j))
        for i in range(self.num_layers):
            for j in range(0, 2 * self.direction_num):
                weight_names.append("{}.bias_{}".format(i, j))
        return weight_names

    def setUp(self):
        self.op_type = "rnn"
        self.dtype = np.float64
        self.sequence_length = np.array([12, 11, 10, 9, 8], dtype=np.int32)
        self.num_layers = 1
        self.is_bidirec = False
        self.is_test = False
        self.mode = "RNN_TANH"
        self.dropout = 0.
        self.set_attrs()

        self.direction_num = 2 if self.is_bidirec else 1
        direction = "bidirectional" if self.is_bidirec else "forward"
        seq_length = 12
        batch_size = 5
        input_size = 3
        hidden_size = 2

        input = np.random.uniform(
            low=-0.1, high=0.1,
            size=(seq_length, batch_size, input_size)).astype(self.dtype)
        if self.sequence_length is not None:
            input[11][1:][:] = 0
            input[10][2:][:] = 0
            input[9][3:][:] = 0
            input[8][4:][:] = 0

        rnn1 = SimpleRNN(
            input_size,
            hidden_size,
            num_layers=self.num_layers,
            time_major=True,
            direction=direction,
            dropout=self.dropout,
            nonlinearity=self.mode)

        flat_w = get_params_for_net(rnn1)

        output, last_hidden = rnn1(input, sequence_length=self.sequence_length)

        init_h = np.zeros((self.num_layers * self.direction_num, batch_size,
                           hidden_size)).astype(self.dtype)

        state_out = np.ndarray((300)).astype("uint8")

        self.inputs = {
            'Input': input,
            'WeightList': flat_w,
            'PreState': [('init_h', init_h)],
            'SequenceLength': self.sequence_length
        }
        if self.sequence_length is None:
            self.inputs = {
                'Input': input,
                'WeightList': flat_w,
                'PreState': [('init_h', init_h)]
            }
        self.attrs = {
            'dropout_prob': self.dropout,
            'is_bidirec': self.is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': self.num_layers,
            'is_test': self.is_test,
            'mode': self.mode
        }
        self.outputs = {
            'Out': output,
            'State': [('last_hidden', last_hidden)],
            'Reserve': np.ndarray((400)).astype("uint8"),
            'DropoutState': state_out
        }

    def set_attrs(self):
        pass

    def test_output(self):
        self.check_output(no_check_set=['Reserve', 'DropoutState'])

    def test_grad(self):
        if not self.is_test:
            var_name_list = self.get_weight_names()
            grad_check_list = ['Input', 'init_h']
            grad_check_list.extend(var_name_list)
            self.check_grad(set(grad_check_list), ['Out', 'last_hidden'])


class TestSimpleRNNOp1(TestSimpleRNNOp):
    def set_attrs(self):
        self.sequence_length = None


class TestSimpleRNNOp2(TestSimpleRNNOp):
    def set_attrs(self):
        self.sequence_length = None
        self.is_bidirec = True


class TestSimpleRNNOp3(TestSimpleRNNOp):
    def set_attrs(self):
        self.sequence_length = None
        self.is_test = True


class TestSimpleRNNOp4(TestSimpleRNNOp):
    def set_attrs(self):
        self.sequence_length = None
        self.is_bidirec = True
        self.is_test = True


class TestSimpleRNNOp5(TestSimpleRNNOp):
    def set_attrs(self):
        self.mode = "RNN_RELU"


if __name__ == '__main__':
    unittest.main()