# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import math from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers import random import sys sys.path.append("./rnn") from rnn_numpy import SimpleRNN from convert import get_params_for_net random.seed(2) np.set_printoptions(threshold=np.inf) paddle.enable_static() class TestSimpleRNNOp(OpTest): def get_weight_names(self): weight_names = [] for i in range(self.num_layers): for j in range(0, 2 * self.direction_num): weight_names.append("{}.weight_{}".format(i, j)) for i in range(self.num_layers): for j in range(0, 2 * self.direction_num): weight_names.append("{}.bias_{}".format(i, j)) return weight_names def setUp(self): self.op_type = "rnn" self.dtype = np.float64 self.sequence_length = np.array([12, 11, 10, 9, 8], dtype=np.int32) self.num_layers = 1 self.is_bidirec = False self.is_test = False self.mode = "RNN_TANH" self.dropout = 0. self.set_attrs() self.direction_num = 2 if self.is_bidirec else 1 direction = "bidirectional" if self.is_bidirec else "forward" seq_length = 12 batch_size = 5 input_size = 3 hidden_size = 2 input = np.random.uniform( low=-0.1, high=0.1, size=(seq_length, batch_size, input_size)).astype(self.dtype) if self.sequence_length is not None: input[11][1:][:] = 0 input[10][2:][:] = 0 input[9][3:][:] = 0 input[8][4:][:] = 0 rnn1 = SimpleRNN( input_size, hidden_size, num_layers=self.num_layers, time_major=True, direction=direction, dropout=self.dropout, nonlinearity=self.mode) flat_w = get_params_for_net(rnn1) output, last_hidden = rnn1(input, sequence_length=self.sequence_length) init_h = np.zeros((self.num_layers * self.direction_num, batch_size, hidden_size)).astype(self.dtype) state_out = np.ndarray((300)).astype("uint8") self.inputs = { 'Input': input, 'WeightList': flat_w, 'PreState': [('init_h', init_h)], 'SequenceLength': self.sequence_length } if self.sequence_length is None: self.inputs = { 'Input': input, 'WeightList': flat_w, 'PreState': [('init_h', init_h)] } self.attrs = { 'dropout_prob': self.dropout, 'is_bidirec': self.is_bidirec, 'input_size': input_size, 'hidden_size': hidden_size, 'num_layers': self.num_layers, 'is_test': self.is_test, 'mode': self.mode } self.outputs = { 'Out': output, 'State': [('last_hidden', last_hidden)], 'Reserve': np.ndarray((400)).astype("uint8"), 'DropoutState': state_out } def set_attrs(self): pass def test_output(self): self.check_output(no_check_set=['Reserve', 'DropoutState']) def test_grad(self): if not self.is_test: var_name_list = self.get_weight_names() grad_check_list = ['Input', 'init_h'] grad_check_list.extend(var_name_list) self.check_grad(set(grad_check_list), ['Out', 'last_hidden']) class TestSimpleRNNOp1(TestSimpleRNNOp): def set_attrs(self): self.sequence_length = None class TestSimpleRNNOp2(TestSimpleRNNOp): def set_attrs(self): self.sequence_length = None self.is_bidirec = True class TestSimpleRNNOp3(TestSimpleRNNOp): def set_attrs(self): self.sequence_length = None self.is_test = True class TestSimpleRNNOp4(TestSimpleRNNOp): def set_attrs(self): self.sequence_length = None self.is_bidirec = True self.is_test = True class TestSimpleRNNOp5(TestSimpleRNNOp): def set_attrs(self): self.mode = "RNN_RELU" if __name__ == '__main__': unittest.main()