cinn_graph_symbolization.cc 9.9 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/cinn_graph_symbolization.h"

#include <algorithm>
#include <queue>
19
#include <string>
20 21
#include <unordered_map>
#include <unordered_set>
J
jiangcheng 已提交
22 23
#include <vector>

24
#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"
J
jiangcheng 已提交
25 26 27 28 29
#include "paddle/fluid/framework/paddle2cinn/transform_desc.h"
#include "paddle/fluid/framework/variable.h"

#include "cinn/frontend/op_mappers/use_op_mappers.h"
#include "cinn/frontend/var_type_utils.h"
30 31
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

namespace paddle {
namespace framework {
namespace paddle2cinn {

using ir::Graph;
using ir::Node;
using CinnTensor = ::cinn::hlir::framework::Tensor;
using OpMapperContext = CinnGraphSymbolization::OpMapperContext;
using CinnOpDesc = CinnGraphSymbolization::CinnOpDesc;
using FeedInfoMap = CinnGraphSymbolization::FeedInfoMap;

namespace utils {

46 47
OpMapperContext::FeedInfo GetCinnFeedInfoFromTensor(
    const Tensor& tensor, bool skip_trans_type = false) {
J
jiangcheng 已提交
48 49 50 51 52 53
  OpMapperContext::FeedInfo info;
  const auto& dim = tensor.dims();
  for (int i = 0; i < dim.size(); i++) {
    info.shape.emplace_back(static_cast<int>(dim[i]));
  }

54 55 56 57 58 59 60 61 62
  // use FP32 as default type if skip_trans_type=true to pass CINN
  // enforce check that is shape and type of each input should be filled,
  // and we will ensure these feeds doesn't be used in execution on cinn_launch
  // op
  auto tensor_type = ::paddle::framework::proto::VarType::FP32;
  if (!skip_trans_type) {
    tensor_type = tensor.type();
  }
  auto cinn_var_type = TransformVarDataTypeToCinn(tensor_type);
J
jiangcheng 已提交
63 64 65 66 67 68
  info.type = ::cinn::frontend::utils::CppVarType2CommonType(cinn_var_type);
  return info;
}
}  // namespace utils

FeedInfoMap CinnGraphSymbolization::GetFeedInfoMapFromInput() const {
69 70 71 72 73 74
  const std::unordered_set<std::string>* no_need_buffer_feeds = nullptr;
  if (graph_.Has(kNoNeedBufferFeeds)) {
    no_need_buffer_feeds =
        &graph_.Get<std::unordered_set<std::string>>(kNoNeedBufferFeeds);
  }

J
jiangcheng 已提交
75 76 77 78
  FeedInfoMap feed_map;
  for (auto& feed_pair : input_tensors_) {
    const auto& feed_name = feed_pair.first;
    const auto* tensor = feed_pair.second;
79 80 81 82 83
    PADDLE_ENFORCE_NE(tensor, nullptr,
                      platform::errors::PreconditionNotMet(
                          "The input variable %s's tensor cannot be NULL,"
                          "we need the variable's dtype and shape from tensor.",
                          feed_name.c_str()));
J
jiangcheng 已提交
84

85
    VLOG(4) << "Get feed info from input: " << feed_name;
86 87 88 89 90 91 92 93
    // if this feed declared as no need buffer then we can not access
    // its type so passing skip_trans_type=true
    if (no_need_buffer_feeds) {
      feed_map[feed_name] = utils::GetCinnFeedInfoFromTensor(
          *tensor, no_need_buffer_feeds->count(feed_name) > 0);
    } else {
      feed_map[feed_name] = utils::GetCinnFeedInfoFromTensor(*tensor);
    }
94 95 96 97 98 99 100

    PADDLE_ENFORCE_NE(
        feed_map[feed_name].shape.size(), 0UL,
        platform::errors::PreconditionNotMet(
            "The input variable %s's tensor shape cannot be empty,"
            "we need the variable's dtype and shape from tensor.",
            feed_name.c_str()));
J
jiangcheng 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  }
  return feed_map;
}

// get the graph's op input Parameter var name set
std::unordered_set<std::string>
CinnGraphSymbolization::GetGraphInputParameterNames() const {
  std::unordered_set<std::string> names;

  for (auto* node : graph_.Nodes()) {
    if (node->IsOp()) {
      for (auto* var : node->inputs) {
        if (var->Var()->IsParameter()) {
          // Only need preserve the input parameter var of graph,
          // others do not.
          names.insert(var->Name());
        }
      }
    }
  }

  return names;
}

// Transform paddle scope to cinn, note that we only preserve the graph’s
// input parameter variable and ignore others.
std::shared_ptr<::cinn::hlir::framework::Scope>
128
CinnGraphSymbolization::CreateCinnScope(const FeedInfoMap& feed_map) {
J
jiangcheng 已提交
129 130 131 132 133 134
  auto cinn_scope = ::cinn::hlir::framework::Scope::Create();

  // get the graph's input parameter variable name list
  auto parameter_names = GetGraphInputParameterNames();

  for (const auto& param_name : parameter_names) {
135 136 137 138 139 140
    PADDLE_ENFORCE_GT(
        feed_map.count(param_name), 0UL,
        platform::errors::NotFound("Cannot find parameter %s from input list,"
                                   "please add the tensor into input.",
                                   param_name.c_str()));

J
jiangcheng 已提交
141 142 143
    // if cannot find var in graph input, skip.
    // scope accepte the CINN format name, so here we need transform
    // paddle format name to CINN format.
144 145
    auto valid_name = ::cinn::utils::TransValidVarName(param_name);
    auto* cinn_var = cinn_scope->Var<CinnTensor>(valid_name);
J
jiangcheng 已提交
146 147 148 149 150 151

    auto& cinn_tensor = absl::get<CinnTensor>(*cinn_var);
    // here we only need preserve dtype and shape, do not need preserve data
    auto feed_info = feed_map.at(param_name);
    cinn_tensor->set_type(feed_info.type);
    cinn_tensor->Resize(::cinn::hlir::framework::Shape(feed_info.shape));
152 153 154
    VLOG(4) << "add paddle param var [" << param_name
            << "] info cinn scope var[" << valid_name << "]";
    var_model_to_program_map_[param_name] = valid_name;
J
jiangcheng 已提交
155 156 157 158 159
  }

  return cinn_scope;
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
std::vector<Node*> CinnGraphSymbolization::TopologicalSort() const {
  std::unordered_set<Node*> op_nodes;
  std::for_each(graph_.Nodes().begin(), graph_.Nodes().end(),
                [&op_nodes](Node* n) {
                  if (n->IsOp()) {
                    op_nodes.emplace(n);
                  }
                });

  std::unordered_map<Node*, std::unordered_map<Node*, size_t>> adj_list;
  std::unordered_map<Node*, size_t> in_degrees;
  for (auto* n : op_nodes) {
    // the op's input is var
    for (auto* in_var : n->inputs) {
      // the var's input is op
      for (auto* in_op : in_var->inputs) {
        if (op_nodes.count(in_op)) {
          ++adj_list[in_op][n];
          ++in_degrees[n];
        }
      }
    }
  }

  // find topology entries
  std::queue<Node*> queue;
  for (auto* n : op_nodes) {
    if (!in_degrees[n]) {
      queue.push(n);
    }
  }

  // topological sorting
  std::vector<Node*> sorted_ops;
  while (!queue.empty()) {
    auto* cur_op = queue.front();
    queue.pop();

    VLOG(4) << "topological sort insert: " << cur_op->Name() << " "
            << reinterpret_cast<void*>(cur_op) << " input "
            << cur_op->inputs.size();
    sorted_ops.emplace_back(cur_op);
    for (const auto& adj_pair : adj_list[cur_op]) {
      in_degrees.at(adj_pair.first) -= adj_pair.second;
      if (!in_degrees[adj_pair.first]) {
        queue.push(adj_pair.first);
      }
    }
  }

  PADDLE_ENFORCE_EQ(sorted_ops.size(), op_nodes.size(),
                    platform::errors::PreconditionNotMet(
                        "The sorting graph contains cycles."));
  return sorted_ops;
}

J
jiangcheng 已提交
216 217 218 219
std::vector<std::unique_ptr<CinnOpDesc>>
CinnGraphSymbolization::TransformAllGraphOpToCinn() const {
  std::vector<std::unique_ptr<CinnOpDesc>> cinn_op_descs;

220
  auto sorted_ops = TopologicalSort();
J
jiangcheng 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  for (auto* node : sorted_ops) {
    cinn_op_descs.emplace_back(std::make_unique<CinnOpDesc>());
    auto& cinn_desc = cinn_op_descs.back();

    TransformOpDescToCinn(node->Op(), cinn_desc.get());
  }
  return cinn_op_descs;
}

void CinnGraphSymbolization::RunOp(const CinnOpDesc& op_desc,
                                   const OpMapperContext& ctx) const {
  const auto& op_type = op_desc.Type();
  auto* kernel = ::cinn::frontend::OpMapperRegistry::Global()->Find(op_type);
  PADDLE_ENFORCE_NE(kernel, nullptr,
                    platform::errors::NotFound(
                        "Op %s is Not Supported by CINN, please register"
                        " this op in the CINN repo.",
                        op_type.c_str()));
  VLOG(4) << "Running Op " << op_type;
  kernel->Run(op_desc, ctx);
}

void CinnGraphSymbolization::RunGraph(const OpMapperContext& ctx) const {
  auto cinn_op_descs = TransformAllGraphOpToCinn();
  // run the CINN op one by one, note that all ops
  // have been sorted at constructor.
  for (auto& op_desc : cinn_op_descs) {
    RunOp(*op_desc, ctx);
  }
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
std::unordered_set<std::string> CinnGraphSymbolization::GetFetchIds() const {
  std::unordered_set<std::string> fetch_names;
  fetch_names.reserve(fetch_var_names_.size());
  std::for_each(
      fetch_var_names_.begin(), fetch_var_names_.end(),
      [this, &fetch_names](const std::string& name) {
        PADDLE_ENFORCE_EQ(
            var_model_to_program_map_.count(name), 1,
            platform::errors::PreconditionNotMet(
                "Cannot find %s in var_model_to_program_map_", name.c_str()));
        fetch_names.insert(var_model_to_program_map_.at(name));
      });
  return fetch_names;
}

J
jiangcheng 已提交
267 268 269 270 271 272 273 274 275 276
::cinn::frontend::Program CinnGraphSymbolization::operator()() {
  std::string builder_name = "NetBuilder_of_graph_" + std::to_string(graph_id_);
  VLOG(4) << "NetBuilder Name " << builder_name;

  ::cinn::frontend::NetBuilder builder(builder_name);

  auto feed_map = GetFeedInfoMapFromInput();
  auto cinn_scope = CreateCinnScope(feed_map);

  OpMapperContext ctx(*cinn_scope, target_, &builder, &var_map_,
277
                      &var_model_to_program_map_, &fetch_var_names_);
J
jiangcheng 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290
  // add all tensor's feed info into context
  for (auto& feed_pair : feed_map) {
    ctx.AddFeedInfo(feed_pair.first, feed_pair.second);
    VLOG(4) << "add feed var [" << feed_pair.first << "] info context";
  }
  RunGraph(ctx);

  return builder.Build();
}

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle