cinn_graph_symbolization.cc 7.5 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/cinn_graph_symbolization.h"

#include <algorithm>
#include <queue>
19 20
#include <unordered_map>
#include <unordered_set>
J
jiangcheng 已提交
21 22 23 24 25 26 27
#include <vector>

#include "paddle/fluid/framework/paddle2cinn/transform_desc.h"
#include "paddle/fluid/framework/variable.h"

#include "cinn/frontend/op_mappers/use_op_mappers.h"
#include "cinn/frontend/var_type_utils.h"
28 29
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

namespace paddle {
namespace framework {
namespace paddle2cinn {

using ir::Graph;
using ir::Node;
using CinnTensor = ::cinn::hlir::framework::Tensor;
using OpMapperContext = CinnGraphSymbolization::OpMapperContext;
using CinnOpDesc = CinnGraphSymbolization::CinnOpDesc;
using FeedInfoMap = CinnGraphSymbolization::FeedInfoMap;

namespace utils {

OpMapperContext::FeedInfo GetCinnFeedInfoFromTensor(const Tensor& tensor) {
  OpMapperContext::FeedInfo info;
  const auto& dim = tensor.dims();
  for (int i = 0; i < dim.size(); i++) {
    info.shape.emplace_back(static_cast<int>(dim[i]));
  }

  auto cinn_var_type = TransformVarDataTypeToCinn(tensor.type());
  info.type = ::cinn::frontend::utils::CppVarType2CommonType(cinn_var_type);
  return info;
}
}  // namespace utils

FeedInfoMap CinnGraphSymbolization::GetFeedInfoMapFromInput() const {
  FeedInfoMap feed_map;
  for (auto& feed_pair : input_tensors_) {
    const auto& feed_name = feed_pair.first;
    const auto* tensor = feed_pair.second;

    feed_map[feed_name] = utils::GetCinnFeedInfoFromTensor(*tensor);
  }
  return feed_map;
}

// get the graph's op input Parameter var name set
std::unordered_set<std::string>
CinnGraphSymbolization::GetGraphInputParameterNames() const {
  std::unordered_set<std::string> names;

  for (auto* node : graph_.Nodes()) {
    if (node->IsOp()) {
      for (auto* var : node->inputs) {
        if (var->Var()->IsParameter()) {
          // Only need preserve the input parameter var of graph,
          // others do not.
          names.insert(var->Name());
        }
      }
    }
  }

  return names;
}

// Transform paddle scope to cinn, note that we only preserve the graph’s
// input parameter variable and ignore others.
std::shared_ptr<::cinn::hlir::framework::Scope>
91
CinnGraphSymbolization::CreateCinnScope(const FeedInfoMap& feed_map) {
J
jiangcheng 已提交
92 93 94 95 96 97 98 99 100
  auto cinn_scope = ::cinn::hlir::framework::Scope::Create();

  // get the graph's input parameter variable name list
  auto parameter_names = GetGraphInputParameterNames();

  for (const auto& param_name : parameter_names) {
    // if cannot find var in graph input, skip.
    // scope accepte the CINN format name, so here we need transform
    // paddle format name to CINN format.
101 102
    auto valid_name = ::cinn::utils::TransValidVarName(param_name);
    auto* cinn_var = cinn_scope->Var<CinnTensor>(valid_name);
J
jiangcheng 已提交
103 104 105 106 107 108

    auto& cinn_tensor = absl::get<CinnTensor>(*cinn_var);
    // here we only need preserve dtype and shape, do not need preserve data
    auto feed_info = feed_map.at(param_name);
    cinn_tensor->set_type(feed_info.type);
    cinn_tensor->Resize(::cinn::hlir::framework::Shape(feed_info.shape));
109 110 111
    VLOG(4) << "add paddle param var [" << param_name
            << "] info cinn scope var[" << valid_name << "]";
    var_model_to_program_map_[param_name] = valid_name;
J
jiangcheng 已提交
112 113 114 115 116
  }

  return cinn_scope;
}

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
std::vector<Node*> CinnGraphSymbolization::TopologicalSort() const {
  std::unordered_set<Node*> op_nodes;
  std::for_each(graph_.Nodes().begin(), graph_.Nodes().end(),
                [&op_nodes](Node* n) {
                  if (n->IsOp()) {
                    op_nodes.emplace(n);
                  }
                });

  std::unordered_map<Node*, std::unordered_map<Node*, size_t>> adj_list;
  std::unordered_map<Node*, size_t> in_degrees;
  for (auto* n : op_nodes) {
    // the op's input is var
    for (auto* in_var : n->inputs) {
      // the var's input is op
      for (auto* in_op : in_var->inputs) {
        if (op_nodes.count(in_op)) {
          ++adj_list[in_op][n];
          ++in_degrees[n];
        }
      }
    }
  }

  // find topology entries
  std::queue<Node*> queue;
  for (auto* n : op_nodes) {
    if (!in_degrees[n]) {
      queue.push(n);
    }
  }

  // topological sorting
  std::vector<Node*> sorted_ops;
  while (!queue.empty()) {
    auto* cur_op = queue.front();
    queue.pop();

    VLOG(4) << "topological sort insert: " << cur_op->Name() << " "
            << reinterpret_cast<void*>(cur_op) << " input "
            << cur_op->inputs.size();
    sorted_ops.emplace_back(cur_op);
    for (const auto& adj_pair : adj_list[cur_op]) {
      in_degrees.at(adj_pair.first) -= adj_pair.second;
      if (!in_degrees[adj_pair.first]) {
        queue.push(adj_pair.first);
      }
    }
  }

  PADDLE_ENFORCE_EQ(sorted_ops.size(), op_nodes.size(),
                    platform::errors::PreconditionNotMet(
                        "The sorting graph contains cycles."));
  return sorted_ops;
}

J
jiangcheng 已提交
173 174 175 176
std::vector<std::unique_ptr<CinnOpDesc>>
CinnGraphSymbolization::TransformAllGraphOpToCinn() const {
  std::vector<std::unique_ptr<CinnOpDesc>> cinn_op_descs;

177
  auto sorted_ops = TopologicalSort();
J
jiangcheng 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  for (auto* node : sorted_ops) {
    cinn_op_descs.emplace_back(std::make_unique<CinnOpDesc>());
    auto& cinn_desc = cinn_op_descs.back();

    TransformOpDescToCinn(node->Op(), cinn_desc.get());
  }
  return cinn_op_descs;
}

void CinnGraphSymbolization::RunOp(const CinnOpDesc& op_desc,
                                   const OpMapperContext& ctx) const {
  const auto& op_type = op_desc.Type();
  auto* kernel = ::cinn::frontend::OpMapperRegistry::Global()->Find(op_type);
  PADDLE_ENFORCE_NE(kernel, nullptr,
                    platform::errors::NotFound(
                        "Op %s is Not Supported by CINN, please register"
                        " this op in the CINN repo.",
                        op_type.c_str()));
  VLOG(4) << "Running Op " << op_type;
  kernel->Run(op_desc, ctx);
}

void CinnGraphSymbolization::RunGraph(const OpMapperContext& ctx) const {
  auto cinn_op_descs = TransformAllGraphOpToCinn();
  // run the CINN op one by one, note that all ops
  // have been sorted at constructor.
  for (auto& op_desc : cinn_op_descs) {
    RunOp(*op_desc, ctx);
  }
}

::cinn::frontend::Program CinnGraphSymbolization::operator()() {
  std::string builder_name = "NetBuilder_of_graph_" + std::to_string(graph_id_);
  VLOG(4) << "NetBuilder Name " << builder_name;

  ::cinn::frontend::NetBuilder builder(builder_name);

  auto feed_map = GetFeedInfoMapFromInput();
  auto cinn_scope = CreateCinnScope(feed_map);

  OpMapperContext ctx(*cinn_scope, target_, &builder, &var_map_,
                      &var_model_to_program_map_);
  // add all tensor's feed info into context
  for (auto& feed_pair : feed_map) {
    ctx.AddFeedInfo(feed_pair.first, feed_pair.second);
    VLOG(4) << "add feed var [" << feed_pair.first << "] info context";
  }
  RunGraph(ctx);

  return builder.Build();
}

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle