op_converter.h 10.2 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
L
Luo Tao 已提交
21
#include "paddle/fluid/framework/block_desc.h"
22
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
23
#include "paddle/fluid/framework/scope.h"
24
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
25
#include "paddle/fluid/inference/tensorrt/engine.h"
26
#include "paddle/fluid/inference/tensorrt/helper.h"
L
Luo Tao 已提交
27
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
39

40 41
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
42 43
                          const framework::Scope& scope,
                          bool test_mode = false) {}
44

45 46
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
47 48
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
49 50
                 const framework::Scope& scope, TensorRTEngine* engine,
                 bool test_mode = false) {
Y
Yan Chunwei 已提交
51
    framework::OpDesc op_desc(op, nullptr);
52 53

    OpConverter* it{nullptr};
L
Luo Tao 已提交
54

55 56 57 58
    if (op_desc.Type() == "mul") {
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
59
        it = Registry<OpConverter>::Global().Lookup("fc");
60 61
      }
    }
N
nhzlx 已提交
62 63 64 65 66 67
    if (op_desc.Type().find("elementwise") != std::string::npos) {
      static std::unordered_set<std::string> add_tensor_op_set{
          "add", "mul", "sub", "div", "max", "min", "pow"};
      // TODO(xingzhaolong): all mul, sub, div
      // static std::unordered_set<std::string> add_weight_op_set {"add", "mul",
      // "sub", "div"};
68
      static std::unordered_set<std::string> add_weight_op_set{"add", "mul"};
N
nhzlx 已提交
69 70 71 72 73 74 75
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL);
      int op_type_len = op_desc.Type().size();
      std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
        PADDLE_ENFORCE(add_weight_op_set.count(op_type) > 0,
                       "Unsupported elementwise type" + op_type);
76 77
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_weight");
78 79
        PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                                op_desc.Type());
N
nhzlx 已提交
80 81 82
      } else {
        PADDLE_ENFORCE(add_tensor_op_set.count(op_type) > 0,
                       "Unsupported elementwise type" + op_type);
83 84
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_tensor");
N
nhzlx 已提交
85
      }
N
nhzlx 已提交
86 87 88 89 90
      PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                              op_desc.Type());
    }

    if (op_desc.Type() == "depthwise_conv2d") {
91
      it = Registry<OpConverter>::Global().Lookup("conv2d");
N
nhzlx 已提交
92 93
      PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                              op_desc.Type());
N
nhzlx 已提交
94 95
    }

96
    if (!it) {
97
      it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
98 99 100
    }
    PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                            op_desc.Type());
101

102
    it->SetEngine(engine);
103
    (*it)(op, scope, test_mode);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    bool has_out_scale = op_desc.HasAttr("out_threshold");
    if (has_out_scale) {
      float out_scale =
          BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
      std::string output_name = "";
      if (op_desc.HasOutput("Output")) {
        output_name = op_desc.Output("Output").front();
      } else if (op_desc.HasOutput("Out")) {
        output_name = op_desc.Output("Out").front();
      } else if (op_desc.HasOutput("Y")) {
        output_name = op_desc.Output("Y").front();
      } else {
        PADDLE_THROW(
            platform::errors::NotFound("Op %s has out threshold but doesn't "
                                       "have an output named \"Output\", "
                                       "\"Out\" or \"Y\".",
                                       op_desc.Type()));
      }
      auto* output_itensor = engine->GetITensor(output_name);
      engine->SetTensorDynamicRange(output_itensor, out_scale);
      VLOG(1) << "Set out scale = " << out_scale << " for tensor "
              << output_name << ".";
    }
L
Luo Tao 已提交
128 129
  }

Y
Yan Chunwei 已提交
130 131
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
132
  void ConvertBlock(const framework::proto::BlockDesc& block,
133 134
                    const std::unordered_set<std::string>& parameters,
                    const framework::Scope& scope, TensorRTEngine* engine) {
N
nhzlx 已提交
135
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
136
    for (int i = 0; i < block.ops_size(); i++) {
137
      const auto& op = block.ops(i);
138
      ConvertOp(op, parameters, scope, engine);
L
Luo Tao 已提交
139 140 141
    }
  }

N
nhzlx 已提交
142
  // The scope  here should be inited with the parameter vars.
143 144 145 146 147 148 149 150 151 152 153 154
  void ConvertBlockToTRTEngine(
      framework::BlockDesc* block_desc, const framework::Scope& scope,
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
      const std::vector<std::string>& outputs, TensorRTEngine* engine) {
    engine->InitNetwork();
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
      PADDLE_ENFORCE(var, "no variable called %s", input);
      PADDLE_ENFORCE_EQ(var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
                        "TensorRT engine only takes LoDTensor as input");
N
nhzlx 已提交
155
      auto var_shape = var->GetShape();
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
        std::vector<int64_t> input_shape;
        input_shape.push_back(-1);
        for (size_t i = 1; i < ranks; i++) {
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
            PADDLE_ENFORCE_EQ(min_input_shape[i], optim_input_shape[i],
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
            input, FluidDataType2TRT(
                       var->Proto()->type().lod_tensor().tensor().data_type()),
            Vec2TRT_Dims(input_shape, input, true));
#endif
      } else {
        engine->DeclareInput(
            input, FluidDataType2TRT(
                       var->Proto()->type().lod_tensor().tensor().data_type()),
            Vec2TRT_Dims(var_shape, input));
      }
187 188 189 190 191 192 193
    }
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
194
    engine->ClearWeights();
195 196
  }

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
  void RreplenishLayerAndOutput(
      nvinfer1::ILayer* layer, const std::string& layer_type,
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
    }
    layer->setName(
        (layer_type + " (Output: " + output_tensor_names[0] + ")").c_str());
  }
L
Luo Tao 已提交
212 213
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

L
Luo Tao 已提交
214 215
  virtual ~OpConverter() {}

L
Luo Tao 已提交
216 217 218
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};

219 220 221
 protected:
  bool test_mode_;

L
Luo Tao 已提交
222 223 224 225 226
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
227
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
228
  std::mutex mut_;
L
Luo Tao 已提交
229 230
};

231 232 233 234
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

235 236 237
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
238 239 240
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
241 242 243 244 245 246 247 248
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

249 250 251
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
252
      TouchConverterRegister_##op_type__();