op_converter.h 8.9 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
L
Luo Tao 已提交
21
#include "paddle/fluid/framework/block_desc.h"
22
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
23
#include "paddle/fluid/framework/scope.h"
24
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
25
#include "paddle/fluid/inference/tensorrt/engine.h"
L
Luo Tao 已提交
26
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
27 28 29 30 31

namespace paddle {
namespace inference {
namespace tensorrt {

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW("unkown type");
  return TRT_DT::kINT32;
}

nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t>& shape) {
  PADDLE_ENFORCE_GT(shape.size(), 1UL,
                    "TensorRT' tensor input requires at least 2 dimensions");
  PADDLE_ENFORCE_LE(shape.size(), 4UL,
                    "TensorRT' tensor input requires at most 4 dimensions");
  PADDLE_ENFORCE(shape.size() == 4UL || shape.size() == 2UL);
  if (shape.size() == 4UL)
    return nvinfer1::DimsCHW(shape[1], shape[2], shape[3]);
  return nvinfer1::DimsCHW(shape[1], 1, 1);
}

}  // namespace // NOLINT

L
Luo Tao 已提交
63 64 65 66 67 68
/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
69

70 71
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
72 73
                          const framework::Scope& scope,
                          bool test_mode = false) {}
74

75 76
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
77 78
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
79 80
                 const framework::Scope& scope, TensorRTEngine* engine,
                 bool test_mode = false) {
Y
Yan Chunwei 已提交
81
    framework::OpDesc op_desc(op, nullptr);
82 83

    OpConverter* it{nullptr};
L
Luo Tao 已提交
84

85 86 87 88
    if (op_desc.Type() == "mul") {
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
89
        it = Registry<OpConverter>::Global().Lookup("fc");
90 91
      }
    }
N
nhzlx 已提交
92 93 94 95 96 97
    if (op_desc.Type().find("elementwise") != std::string::npos) {
      static std::unordered_set<std::string> add_tensor_op_set{
          "add", "mul", "sub", "div", "max", "min", "pow"};
      // TODO(xingzhaolong): all mul, sub, div
      // static std::unordered_set<std::string> add_weight_op_set {"add", "mul",
      // "sub", "div"};
98
      static std::unordered_set<std::string> add_weight_op_set{"add", "mul"};
N
nhzlx 已提交
99 100 101 102 103 104 105
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL);
      int op_type_len = op_desc.Type().size();
      std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
        PADDLE_ENFORCE(add_weight_op_set.count(op_type) > 0,
                       "Unsupported elementwise type" + op_type);
106 107
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_weight");
108 109
        PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                                op_desc.Type());
N
nhzlx 已提交
110 111 112
      } else {
        PADDLE_ENFORCE(add_tensor_op_set.count(op_type) > 0,
                       "Unsupported elementwise type" + op_type);
113 114
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_tensor");
N
nhzlx 已提交
115
      }
N
nhzlx 已提交
116 117 118 119 120
      PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                              op_desc.Type());
    }

    if (op_desc.Type() == "depthwise_conv2d") {
121
      it = Registry<OpConverter>::Global().Lookup("conv2d");
N
nhzlx 已提交
122 123
      PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                              op_desc.Type());
N
nhzlx 已提交
124 125
    }

126
    if (!it) {
127
      it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
128 129 130 131
    }
    PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                            op_desc.Type());
    it->SetEngine(engine);
132
    (*it)(op, scope, test_mode);
L
Luo Tao 已提交
133 134
  }

Y
Yan Chunwei 已提交
135 136
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
137
  void ConvertBlock(const framework::proto::BlockDesc& block,
138 139
                    const std::unordered_set<std::string>& parameters,
                    const framework::Scope& scope, TensorRTEngine* engine) {
N
nhzlx 已提交
140
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
141
    for (int i = 0; i < block.ops_size(); i++) {
142
      const auto& op = block.ops(i);
143
      ConvertOp(op, parameters, scope, engine);
L
Luo Tao 已提交
144 145 146
    }
  }

N
nhzlx 已提交
147
  // The scope  here should be inited with the parameter vars.
148 149 150 151 152 153 154 155 156 157 158 159
  void ConvertBlockToTRTEngine(
      framework::BlockDesc* block_desc, const framework::Scope& scope,
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
      const std::vector<std::string>& outputs, TensorRTEngine* engine) {
    engine->InitNetwork();
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
      PADDLE_ENFORCE(var, "no variable called %s", input);
      PADDLE_ENFORCE_EQ(var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
                        "TensorRT engine only takes LoDTensor as input");
N
nhzlx 已提交
160 161
      auto var_shape = var->GetShape();

162 163 164
      engine->DeclareInput(
          input, FluidDataType2TRT(
                     var->Proto()->type().lod_tensor().tensor().data_type()),
N
nhzlx 已提交
165
          Vec2TRT_Dims(var_shape));
166 167 168 169 170 171 172 173 174
    }
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
  }

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  void RreplenishLayerAndOutput(
      nvinfer1::ILayer* layer, const std::string& layer_type,
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
    }
    layer->setName(
        (layer_type + " (Output: " + output_tensor_names[0] + ")").c_str());
  }
L
Luo Tao 已提交
190 191
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

L
Luo Tao 已提交
192 193
  virtual ~OpConverter() {}

L
Luo Tao 已提交
194 195 196
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};

197 198 199
 protected:
  bool test_mode_;

L
Luo Tao 已提交
200 201 202 203 204
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
205
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
206
  std::mutex mut_;
L
Luo Tao 已提交
207 208
};

209 210 211 212
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

213 214 215
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
216 217 218
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
219 220 221 222 223 224 225 226 227 228 229 230
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

#define USE_TRT_CONVERTER(op_type__)                                    \
  extern int TouchConverterRegister_##op_type__();                      \
  static int use_op_converter_trt_##op_type__ __attribute__((unused)) = \
      TouchConverterRegister_##op_type__();