fake_quantize_op.cc 37.1 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_quantize_op.h"
16

17
#include <algorithm>
视言's avatar
视言 已提交
18
#include <string>
19

20
#include "paddle/fluid/framework/eigen.h"
21
#include "paddle/fluid/framework/op_version_registry.h"
22
#include "paddle/fluid/platform/transform.h"
W
wuyefeilin 已提交
23
#include "paddle/phi/kernels/impl/clip_kernel_impl.h"
视言's avatar
视言 已提交
24 25 26 27

namespace paddle {
namespace operators {

28 29 30 31 32
template <typename T>
struct Compare {
 public:
  bool operator()(const T a, const T b) { return (std::abs(a) < std::abs(b)); }
};
33 34

template <typename T>
L
Leo Chen 已提交
35 36
struct FindAbsMaxFunctor<phi::CPUContext, T> {
  void operator()(const phi::CPUContext &ctx,
37 38 39
                  const T *in,
                  const int num,
                  T *out) {
40
    *out = std::abs(*(std::max_element(in + 0, in + num, Compare<T>())));
41 42 43
  }
};

L
Leo Chen 已提交
44
template struct FindAbsMaxFunctor<phi::CPUContext, float>;
45

46
template <typename T>
L
Leo Chen 已提交
47 48
struct FindChannelAbsMaxFunctor<phi::CPUContext, T> {
  void operator()(const phi::CPUContext &ctx,
49 50 51
                  const framework::Tensor &in_tensor,
                  const int quant_axis,
                  T *out_abs_max) {
52 53 54
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
55 56
        quant_axis == 0 || quant_axis == 1,
        true,
57 58 59
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
60
    auto *in_data = in_tensor.data<T>();
61 62 63 64 65
    auto in_dims = in_tensor.dims();
    const int64_t channel = in_dims[quant_axis];
    if (quant_axis == 0) {
      const int64_t channel_size = in_tensor.numel() / channel;
      for (int64_t i = 0; i < channel; i++) {
66 67
        auto *start = in_data + i * channel_size;
        auto *end = in_data + (i + 1) * channel_size;
68 69 70 71 72 73 74 75 76 77 78
        out_abs_max[i] =
            std::abs(*(std::max_element(start, end, Compare<T>())));
      }
    } else if (quant_axis == 1) {
      for (int64_t i = 0; i < channel; i++) {
        out_abs_max[i] = 0;
      }
      const int64_t step_i = in_tensor.numel() / in_dims[0];
      const int64_t step_j = in_tensor.numel() / (in_dims[0] * in_dims[1]);
      for (int64_t i = 0; i < in_dims[0]; i++) {
        for (int64_t j = 0; j < in_dims[1]; j++) {
79 80
          auto *start = in_data + i * step_i + j * step_j;
          auto *end = in_data + i * step_i + (j + 1) * step_j;
81 82 83 84
          T abs_max = std::abs(*(std::max_element(start, end, Compare<T>())));
          out_abs_max[j] = std::max(out_abs_max[j], abs_max);
        }
      }
85 86 87 88
    }
  }
};

L
Leo Chen 已提交
89
template struct FindChannelAbsMaxFunctor<phi::CPUContext, float>;
90

91
template <typename T>
L
Leo Chen 已提交
92 93
struct ClipAndFakeQuantFunctor<phi::CPUContext, T> {
  void operator()(const phi::CPUContext &ctx,
94 95 96 97 98
                  const framework::Tensor &in,
                  const framework::Tensor &scale,
                  const int bin_cnt,
                  const int round_type,
                  framework::Tensor *out) {
99
    T s = scale.data<T>()[0];
100
    T inv_s = inverse(s);
L
Leo Chen 已提交
101
    platform::Transform<phi::CPUContext> trans;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    if (round_type == 0) {
      trans(ctx,
            in.data<T>(),
            in.data<T>() + in.numel(),
            out->mutable_data<T>(ctx.GetPlace()),
            QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
    } else {
      trans(ctx,
            in.data<T>(),
            in.data<T>() + in.numel(),
            out->mutable_data<T>(ctx.GetPlace()),
            phi::ClipFunctor<T>(-s, s));
      auto out_e = framework::EigenVector<T>::Flatten(*out);
      out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
    }
117 118 119
  }
};

L
Leo Chen 已提交
120
template struct ClipAndFakeQuantFunctor<phi::CPUContext, float>;
121

122
template <typename T>
L
Leo Chen 已提交
123 124
struct ClipAndFakeQuantDequantFunctor<phi::CPUContext, T> {
  void operator()(const phi::CPUContext &ctx,
125 126 127 128 129
                  const framework::Tensor &in,
                  const framework::Tensor &scale,
                  const int bin_cnt,
                  const int round_type,
                  framework::Tensor *out) {
130
    T s = scale.data<T>()[0];
131 132
    T inv_s = inverse(s);

L
Leo Chen 已提交
133
    platform::Transform<phi::CPUContext> trans;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    if (round_type == 0) {
      trans(ctx,
            in.data<T>(),
            in.data<T>() + in.numel(),
            out->mutable_data<T>(ctx.GetPlace()),
            QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
      auto out_e = framework::EigenVector<T>::Flatten(*out);
      out_e.device(*ctx.eigen_device()) = out_e * s / static_cast<T>(bin_cnt);
    } else {
      trans(ctx,
            in.data<T>(),
            in.data<T>() + in.numel(),
            out->mutable_data<T>(ctx.GetPlace()),
            phi::ClipFunctor<T>(-s, s));
      auto out_e = framework::EigenVector<T>::Flatten(*out);
      out_e.device(*ctx.eigen_device()) =
          (bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
    }
152 153
  }
};
L
Leo Chen 已提交
154
template struct ClipAndFakeQuantDequantFunctor<phi::CPUContext, float>;
155

156
template <typename T>
L
Leo Chen 已提交
157 158
struct ChannelClipAndFakeQuantFunctor<phi::CPUContext, T> {
  void operator()(const phi::CPUContext &ctx,
159 160 161 162 163 164
                  const framework::Tensor &in,
                  const framework::Tensor &scale,
                  const int bin_cnt,
                  const int round_type,
                  const int quant_axis,
                  framework::Tensor *out) {
165 166 167
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
168 169
        quant_axis == 0 || quant_axis == 1,
        true,
170 171 172
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
173 174 175
    auto *scale_data = scale.data<T>();
    auto *in_data = in.data<T>();
    auto *out_data = out->mutable_data<T>(ctx.GetPlace());
176 177
    auto in_dims = in.dims();
    const int64_t channel = in_dims[quant_axis];
L
Leo Chen 已提交
178
    platform::Transform<phi::CPUContext> trans;
179 180 181 182
    if (quant_axis == 0) {
      const int64_t channel_size = in.numel() / channel;
      for (int64_t i = 0; i < channel; i++) {
        T s = scale_data[i];
183 184
        auto *start = in_data + i * channel_size;
        auto *end = in_data + (i + 1) * channel_size;
185
        T inv_s = inverse(s);
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        if (round_type == 0) {
          trans(ctx,
                start,
                end,
                out_data + i * channel_size,
                QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
        } else {
          trans(ctx,
                start,
                end,
                out_data + i * channel_size,
                phi::ClipFunctor<T>(-s, s));
        }
      }
      if (round_type == 1) {
        for (int64_t i = 0; i < channel; i++) {
          T s = scale_data[i];
          T inv_s = inverse(s);
          framework::Tensor one_channel_out = out->Slice(i, i + 1);
          auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
          out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
        }
208 209 210 211 212 213 214 215
      }
    } else if (quant_axis == 1) {
      const int64_t step_i = in.numel() / in_dims[0];
      const int64_t step_j = in.numel() / (in_dims[0] * in_dims[1]);
      for (int i = 0; i < in_dims[0]; i++) {
        for (int j = 0; j < in_dims[1]; j++) {
          T s = scale_data[j];
          T inv_s = inverse(s);
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
          auto *start = in_data + i * step_i + j * step_j;
          auto *end = in_data + i * step_i + (j + 1) * step_j;
          auto *cur_out_data = out_data + i * step_i + j * step_j;
          if (round_type == 0) {
            trans(ctx,
                  start,
                  end,
                  cur_out_data,
                  QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
          } else {
            trans(ctx, start, end, cur_out_data, phi::ClipFunctor<T>(-s, s));
            for (int k = 0; k < step_j; k++) {
              cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]);
            }
          }
231 232
        }
      }
233 234 235 236
    }
  }
};

L
Leo Chen 已提交
237
template struct ChannelClipAndFakeQuantFunctor<phi::CPUContext, float>;
H
huangxu96 已提交
238
template <typename T>
L
Leo Chen 已提交
239 240
struct ChannelClipFakeQuantDequantFunctor<phi::CPUContext, T> {
  void operator()(const phi::CPUContext &ctx,
241 242 243 244 245 246
                  const framework::Tensor &in,
                  const framework::Tensor &scale,
                  const int bin_cnt,
                  const int round_type,
                  const int quant_axis,
                  framework::Tensor *out) {
H
huangxu96 已提交
247
    PADDLE_ENFORCE_EQ(
248 249
        quant_axis == 0 || quant_axis == 1,
        true,
H
huangxu96 已提交
250 251 252
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
253

254 255 256
    auto *scale_data = scale.data<T>();
    auto *in_data = in.data<T>();
    auto *out_data = out->mutable_data<T>(ctx.GetPlace());
H
huangxu96 已提交
257 258
    auto in_dims = in.dims();
    const int64_t channel = in_dims[quant_axis];
L
Leo Chen 已提交
259
    platform::Transform<phi::CPUContext> trans;
H
huangxu96 已提交
260 261 262 263
    if (quant_axis == 0) {
      const int64_t channel_size = in.numel() / channel;
      for (int i = 0; i < channel; i++) {
        T s = scale_data[i];
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        auto *start = in_data + i * channel_size;
        auto *end = in_data + (i + 1) * channel_size;
        if (round_type == 0) {
          T inv_s = inverse(s);
          trans(ctx,
                start,
                end,
                out_data + i * channel_size,
                QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
        } else {
          trans(ctx,
                start,
                end,
                out_data + i * channel_size,
                phi::ClipFunctor<T>(-s, s));
        }
      }
      for (int i = 0; i < channel; i++) {
        T s = scale_data[i];
H
huangxu96 已提交
283 284
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
285 286 287 288 289 290 291 292
        if (round_type == 0) {
          out_e.device(*ctx.eigen_device()) =
              out_e * s / static_cast<T>(bin_cnt);
        } else {
          T inv_s = inverse(s);
          out_e.device(*ctx.eigen_device()) =
              (bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
        }
H
huangxu96 已提交
293 294 295 296 297 298 299 300
      }
    } else if (quant_axis == 1) {
      const int64_t step_i = in.numel() / in_dims[0];
      const int64_t step_j = in.numel() / (in_dims[0] * in_dims[1]);
      for (int i = 0; i < in_dims[0]; i++) {
        for (int j = 0; j < in_dims[1]; j++) {
          T s = scale_data[j];
          T inv_s = inverse(s);
301 302 303 304 305 306 307 308 309 310 311 312
          auto *start = in_data + i * step_i + j * step_j;
          auto *end = in_data + i * step_i + (j + 1) * step_j;
          auto *cur_out_data = out_data + i * step_i + j * step_j;
          if (round_type == 0) {
            trans(ctx,
                  start,
                  end,
                  cur_out_data,
                  QuantTensorFunctor<T>(static_cast<T>(bin_cnt), inv_s));
          } else {
            trans(ctx, start, end, cur_out_data, phi::ClipFunctor<T>(-s, s));
          }
H
huangxu96 已提交
313
          for (int k = 0; k < step_j; k++) {
314 315 316 317 318 319
            if (round_type == 0) {
              cur_out_data[k] = cur_out_data[k] * s / static_cast<T>(bin_cnt);
            } else {
              cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]) *
                                s / static_cast<T>(bin_cnt);
            }
H
huangxu96 已提交
320 321 322 323 324 325 326
          }
        }
      }
    }
  }
};

L
Leo Chen 已提交
327
template struct ChannelClipFakeQuantDequantFunctor<phi::CPUContext, float>;
328
template <typename T>
L
Leo Chen 已提交
329 330
struct FindRangeAbsMaxFunctor<phi::CPUContext, T> {
  void operator()(const phi::CPUContext &ctx,
331 332 333 334 335 336 337
                  const framework::Tensor &cur_scale,
                  const framework::Tensor &last_scale,
                  const framework::Tensor &iter,
                  const int window_size,
                  framework::Tensor *scales_arr,
                  framework::Tensor *out_scale) {
    T *scale_arr = scales_arr->mutable_data<T>(ctx.GetPlace());
338 339 340 341 342 343 344 345 346 347 348
    int64_t it = iter.data<int64_t>()[0];
    int idx = it % window_size;
    T removed = scale_arr[idx];
    T cur = cur_scale.data<T>()[0];
    scale_arr[idx] = cur;

    T max = last_scale.data<T>()[0];
    if (max < cur) {
      max = cur;
    } else if (fabs(removed - max) < 1e-6) {
      int size = (it > window_size) ? window_size : it;
L
Leo Chen 已提交
349
      FindAbsMaxFunctor<phi::CPUContext, T>()(ctx, scale_arr, size, &max);
350 351 352 353 354
    }
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = max;
  }
};

L
Leo Chen 已提交
355
template struct FindRangeAbsMaxFunctor<phi::CPUContext, float>;
356

357
template <typename T>
L
Leo Chen 已提交
358 359
struct FindMovingAverageAbsMaxFunctor<phi::CPUContext, T> {
  void operator()(const phi::CPUContext &ctx,
360 361 362 363 364 365 366
                  const framework::Tensor &in_accum,
                  const framework::Tensor &in_state,
                  const T *cur_scale,
                  const float rate,
                  framework::Tensor *out_state,
                  framework::Tensor *out_accum,
                  framework::Tensor *out_scale) {
367 368 369 370 371 372 373 374 375 376 377 378 379 380
    T accum = in_accum.data<T>()[0];
    T state = in_state.data<T>()[0];
    T scale = cur_scale[0];

    state = rate * state + 1;
    accum = rate * accum + scale;
    scale = accum / state;

    out_state->mutable_data<T>(ctx.GetPlace())[0] = state;
    out_accum->mutable_data<T>(ctx.GetPlace())[0] = accum;
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = scale;
  }
};

L
Leo Chen 已提交
381
template struct FindMovingAverageAbsMaxFunctor<phi::CPUContext, float>;
382

383
class FakeQuantOrWithDequantAbsMaxOp : public framework::OperatorWithKernel {
视言's avatar
视言 已提交
384
 public:
385 386 387 388
  FakeQuantOrWithDequantAbsMaxOp(const std::string &type,
                                 const framework::VariableNameMap &inputs,
                                 const framework::VariableNameMap &outputs,
                                 const framework::AttributeMap &attrs)
视言's avatar
视言 已提交
389 390
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

391 392 393 394 395 396
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(
        ctx->HasInput("X"), "Input", "X", "FakeQuantOrWithDequantAbsMaxOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"),
                   "Output",
                   "Out",
397
                   "FakeQuantOrWithDequantAbsMaxOp");
398 399 400
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
                   "Output",
                   "OutScale",
401
                   "FakeQuantOrWithDequantAbsMaxOp");
视言's avatar
视言 已提交
402
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
403
    ctx->SetOutputDim("OutScale", {1});
视言's avatar
视言 已提交
404 405
    ctx->ShareLoD("X", /*->*/ "Out");
  }
406 407 408

 protected:
  framework::OpKernelType GetExpectedKernelType(
409
      const framework::ExecutionContext &ctx) const override {
410 411 412
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
413
  }
视言's avatar
视言 已提交
414 415
};

416 417
class FakeQuantOrWithDequantAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
视言's avatar
视言 已提交
418 419
 public:
  void Make() override {
420 421 422 423 424
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current scale");
视言's avatar
视言 已提交
425 426
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
427 428 429
        .AddCustomChecker([](const int &bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
                            true,
430 431 432 433
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
视言's avatar
视言 已提交
434 435
        });
    AddComment(R"DOC(
436
This is a Base Op which supports FakeQuantAbsMaxOpMaker and FakeQuantDequantAbsMaxOpMaker.
437
FakeQuantAbsMaxOp operator is used in the dynamic quantization.
视言's avatar
视言 已提交
438

439
$$scale = max(abs(X))$$
440 441
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
442

443
FakeQuantDequantAbsMaxOp operator does the abs_max quantization and then dequantization.
444 445 446 447 448

$$scale = max(abs(X))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range) * scale / range$$

449 450 451
)DOC");
  }
};
视言's avatar
视言 已提交
452

Z
Zhen Wang 已提交
453 454 455 456
class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

457 458 459 460 461 462
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(
        ctx->HasInput("X"), "Input", "X", "FakeChannelWiseQuantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"),
                   "Output",
                   "Out",
463
                   "FakeChannelWiseQuantizeAbsMax");
464 465 466
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
                   "Output",
                   "OutScale",
467
                   "FakeChannelWiseQuantizeAbsMax");
468
    int quant_axis = ctx->Attrs().Get<int>("quant_axis");
Z
Zhen Wang 已提交
469
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
470
    ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
Z
Zhen Wang 已提交
471 472 473 474 475
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
476
      const framework::ExecutionContext &ctx) const override {
477 478
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Z
Zhen Wang 已提交
479 480 481 482 483 484 485 486 487 488 489
  }
};

class FakeChannelWiseQuantizeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
490
    AddOutput("OutScale", "(Tensor) Current channel wise scale");
491 492 493 494 495
    AddAttr<int>("quant_axis",
                 "(int, default 0) The axis for quantization. "
                 "For conv2d, depthwise_conv2d, conv2d_transpose "
                 "and mul, the quant_axis is equal to the cout axis.")
        .SetDefault(0)
496 497 498
        .AddCustomChecker([](const int &quant_axis) {
          PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1,
                            true,
499 500 501 502 503
                            platform::errors::InvalidArgument(
                                "'quant_axis' should be 0 or 1, but "
                                "the received is %d",
                                quant_axis));
        });
Z
Zhen Wang 已提交
504 505
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
506 507 508
        .AddCustomChecker([](const int &bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
                            true,
509 510 511 512
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
Z
Zhen Wang 已提交
513
        });
514 515 516 517
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
Z
Zhen Wang 已提交
518 519 520 521 522
    AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.

$$scale_c = max(abs(X_c))$$
Z
Zhen Wang 已提交
523 524
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c})$$
Z
Zhen Wang 已提交
525
In above three formulas, the range value of c is as follow:
Z
Zhen Wang 已提交
526
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
Z
Zhen Wang 已提交
527 528 529 530
)DOC");
  }
};

H
huangxu96 已提交
531 532 533 534 535
class FakeChannelWiseQuantizeDequantizeAbsMaxOp
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

536 537 538 539
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"),
                   "Input",
                   "X",
H
huangxu96 已提交
540
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
541 542 543
    OP_INOUT_CHECK(ctx->HasOutput("Out"),
                   "Output",
                   "Out",
H
huangxu96 已提交
544
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
545 546 547
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
                   "Output",
                   "OutScale",
H
huangxu96 已提交
548 549 550 551 552 553 554 555 556
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
    int quant_axis = ctx->Attrs().Get<int>("quant_axis");
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
557
      const framework::ExecutionContext &ctx) const override {
H
huangxu96 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized and dequantized low level tensor, "
              "saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current channel wise scale");
    AddAttr<int>("quant_axis",
                 "(int, default 0) The axis for quantization. "
                 "For conv2d, depthwise_conv2d, conv2d_transpose "
                 "and mul, the quant_axis is equal to the cout axis.")
        .SetDefault(0)
577 578 579
        .AddCustomChecker([](const int &quant_axis) {
          PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1,
                            true,
H
huangxu96 已提交
580 581 582 583 584 585 586
                            platform::errors::InvalidArgument(
                                "'quant_axis' should be 0 or 1, but "
                                "the received is %d",
                                quant_axis));
        });
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
587 588 589
        .AddCustomChecker([](const int &bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
                            true,
H
huangxu96 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
        });
    AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.

$$scale_c = max(abs(X_c))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c}) * \frac{scale_c} {range}$$
In above three formulas, the range value of c is as follow:
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
)DOC");
  }
};

608 609
class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel {
 public:
610 611 612 613
  FakeQuantizeRangeAbsMaxOp(const std::string &type,
                            const framework::VariableNameMap &inputs,
                            const framework::VariableNameMap &outputs,
                            const framework::AttributeMap &attrs)
614
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
视言's avatar
视言 已提交
615

616
  void InferShape(framework::InferShapeContext *ctx) const override {
617
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FakeQuantizeRangeAbsMax");
618 619 620 621 622
    OP_INOUT_CHECK(
        ctx->HasOutput("Out"), "Output", "Out", "FakeQuantizeRangeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
                   "Output",
                   "OutScale",
623
                   "FakeQuantizeRangeAbsMax");
624 625 626 627 628 629 630 631
    if (ctx->HasOutput("OutScales")) {
      int window_size = ctx->Attrs().Get<int>("window_size");
      ctx->SetOutputDim("OutScales", {window_size});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }
视言's avatar
视言 已提交
632

633 634
 protected:
  framework::OpKernelType GetExpectedKernelType(
635
      const framework::ExecutionContext &ctx) const override {
636 637 638
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
639 640
  }
};
视言's avatar
视言 已提交
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655
class FakeQuantizeRangeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("Iter", "Global step iteration.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutScales", "(Tensor) scale buffer.").AsDispensable();
    AddAttr<int>("window_size", "(int, default 10000) window range size.")
        .SetDefault(10000);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
656 657 658
        .AddCustomChecker([](const int &bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
                            true,
659 660 661 662
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
663
        });
664 665 666 667
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
668 669
    AddComment(R"DOC(
FakeQuantize operator is used in static quantization.
视言's avatar
视言 已提交
670

671
$$scale = max(max(abs(x)), history_abs_max)$$
672 673
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
674 675 676 677 678

)DOC");
  }
};

679 680
class FakeQuantOrWithDequantMovingAverageAbsMaxOp
    : public framework::OperatorWithKernel {
681
 public:
682
  FakeQuantOrWithDequantMovingAverageAbsMaxOp(
683 684 685 686
      const std::string &type,
      const framework::VariableNameMap &inputs,
      const framework::VariableNameMap &outputs,
      const framework::AttributeMap &attrs)
687 688
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

689 690 691 692
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"),
                   "Input",
                   "X",
693
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
694 695 696
    OP_INOUT_CHECK(ctx->HasOutput("Out"),
                   "Output",
                   "Out",
697
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
698 699 700
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
                   "Output",
                   "OutScale",
701
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
702 703 704 705 706 707 708 709 710 711 712 713 714
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
715
      const framework::ExecutionContext &ctx) const override {
716 717 718
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
719 720 721
  }
};

722
class FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("InAccum", "Last accum.").AsDispensable();
    AddInput("InState", "Last state.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
    AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
    AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
        .SetDefault(0.9);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
738 739 740
        .AddCustomChecker([](const int &bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16,
                            true,
741 742 743 744
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
745 746 747 748 749 750
        });
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddComment(R"DOC(
751
This is a Base Op which supports FakeQuantMovingAverageAbsMaxOp and FakeQuantDequantMovingAverageAbsMaxOp.
752
FakeQuantMovingAverageAbsMaxOp operator is used in the static quantization.
753

Z
Zhen Wang 已提交
754 755
$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
756 757
$$Out = round(X/scale * range)$$

758
FakeQuantDequantMovingAverageAbsMaxOp operator does the moving_average_abs_max quant and then dequant.
759 760 761 762 763

$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range) * scale / range$$

764 765 766 767
)DOC");
  }
};

Z
Zhen Wang 已提交
768 769 770 771
class MovingAverageAbsMaxScaleOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

772 773 774 775 776 777
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(
        ctx->HasInput("X"), "Input", "X", "MovingAverageAbsMaxScale");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"),
                   "Output",
                   "OutScale",
778
                   "MovingAverageAbsMaxScale");
779

Z
Zhen Wang 已提交
780 781 782 783 784 785
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
786 787 788 789 790
    if (ctx->HasOutput("Out")) {
      ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
      ctx->SetOutputDim("OutScale", {1});
      ctx->ShareLoD("X", /*->*/ "Out");
    }
Z
Zhen Wang 已提交
791 792 793 794
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
795
      const framework::ExecutionContext &ctx) const override {
796 797
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Z
Zhen Wang 已提交
798 799 800 801 802 803 804 805 806 807
  }
};

class MovingAverageAbsMaxScaleOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InAccum", "Last accum.").AsDispensable();
    AddInput("InState", "Last state.").AsDispensable();
808 809 810
    AddOutput("Out",
              "(Tensor) Output tensor is just equivalent to the input tensor.")
        .AsDispensable();
Z
Zhen Wang 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    AddOutput("OutScale", " Current scale");
    AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
    AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
    AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
        .SetDefault(0.9);
    AddAttr<bool>("is_test",
                  "(bool, default false) Set true for inference only and false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddComment(R"DOC(
MovingAverageAbsMaxScale operator is only used for calculating the quantization scale.
And it will not quantize the input tensor.

$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$Out = X$$

)DOC");
  }
};

831
class StrightThroughEstimatorGradOp : public framework::OperatorWithKernel {
832 833 834
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

835
  void InferShape(framework::InferShapeContext *ctx) const override {
836
    auto out_grad_name = framework::GradVarName("Out");
837
    auto x_grad_name = framework::GradVarName("X");
838 839 840
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name),
                   "Input",
                   out_grad_name,
841
                   "StrightThroughEstimatorGradOp");
842 843 844
    OP_INOUT_CHECK(ctx->HasOutput(x_grad_name),
                   "Output",
                   x_grad_name,
845
                   "StrightThroughEstimatorGradOp");
846 847 848 849 850

    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim(out_grad_name));
  }

  framework::OpKernelType GetExpectedKernelType(
851
      const framework::ExecutionContext &ctx) const override {
852 853 854 855 856 857 858
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename T>
859
class StrightThroughEstimatorMaker : public framework::SingleGradOpMaker<T> {
860 861 862 863 864
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
865
    grad_op->SetType("stright_throuth_estimator_grad");
866 867 868 869 870 871
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

视言's avatar
视言 已提交
872 873 874 875
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
L
Leo Chen 已提交
876
using CPU = phi::CPUContext;
877

H
hong 已提交
878
REGISTER_OPERATOR(
879 880
    fake_quantize_abs_max,
    ops::FakeQuantOrWithDequantAbsMaxOp,
881
    ops::FakeQuantOrWithDequantAbsMaxOpMaker,
H
hong 已提交
882 883
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
884 885
REGISTER_OP_CPU_KERNEL(fake_quantize_abs_max,
                       ops::FakeQuantizeAbsMaxKernel<CPU, float>);
视言's avatar
视言 已提交
886

887
REGISTER_OPERATOR(
888 889
    fake_quantize_dequantize_abs_max,
    ops::FakeQuantOrWithDequantAbsMaxOp,
890 891 892
    ops::FakeQuantOrWithDequantAbsMaxOpMaker,
    ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
    ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
893 894 895
REGISTER_OP_CPU_KERNEL(fake_quantize_dequantize_abs_max,
                       ops::FakeQuantizeDequantizeAbsMaxKernel<CPU, float>);

H
hong 已提交
896
REGISTER_OPERATOR(
897 898
    fake_quantize_range_abs_max,
    ops::FakeQuantizeRangeAbsMaxOp,
H
hong 已提交
899 900 901
    ops::FakeQuantizeRangeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
902 903
REGISTER_OP_CPU_KERNEL(fake_quantize_range_abs_max,
                       ops::FakeQuantizeRangeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
904

H
hong 已提交
905 906 907 908 909 910
REGISTER_OPERATOR(
    fake_quantize_moving_average_abs_max,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
911 912
REGISTER_OP_CPU_KERNEL(fake_quantize_moving_average_abs_max,
                       ops::FakeQuantizeMovingAverageAbsMaxKernel<CPU, float>);
913

914 915 916 917 918 919
REGISTER_OPERATOR(
    fake_quantize_dequantize_moving_average_abs_max,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
    ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
    ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
920 921 922 923
REGISTER_OP_CPU_KERNEL(
    fake_quantize_dequantize_moving_average_abs_max,
    ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CPU, float>);

H
hong 已提交
924
REGISTER_OPERATOR(
925 926
    fake_channel_wise_quantize_abs_max,
    ops::FakeChannelWiseQuantizeAbsMaxOp,
H
hong 已提交
927 928 929
    ops::FakeChannelWiseQuantizeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
930 931
REGISTER_OP_CPU_KERNEL(fake_channel_wise_quantize_abs_max,
                       ops::FakeChannelWiseQuantizeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
932

H
hong 已提交
933
REGISTER_OPERATOR(
934 935
    moving_average_abs_max_scale,
    ops::MovingAverageAbsMaxScaleOp,
H
hong 已提交
936
    ops::MovingAverageAbsMaxScaleOpMaker,
937 938
    ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
    ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
939 940
REGISTER_OP_CPU_KERNEL(moving_average_abs_max_scale,
                       ops::MovingAverageAbsMaxScaleKernel<CPU, float>);
941

942 943 944 945
REGISTER_OPERATOR(stright_throuth_estimator_grad,
                  ops::StrightThroughEstimatorGradOp);
REGISTER_OP_CPU_KERNEL(stright_throuth_estimator_grad,
                       ops::StrightThroughEstimatorGradKernel<CPU, float>);
H
huangxu96 已提交
946

947 948 949 950 951 952
REGISTER_OPERATOR(
    fake_channel_wise_quantize_dequantize_abs_max,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxOp,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker,
    ops::StrightThroughEstimatorMaker<paddle::framework::OpDesc>,
    ops::StrightThroughEstimatorMaker<paddle::imperative::OpBase>);
H
huangxu96 已提交
953 954 955
REGISTER_OP_CPU_KERNEL(
    fake_channel_wise_quantize_dequantize_abs_max,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxKernel<CPU, float>);
956 957 958 959 960 961 962

REGISTER_OP_VERSION(fake_channel_wise_quantize_abs_max)
    .AddCheckpoint(
        R"ROC(add new attributes [quant_axis] for applying per-channel "
        "quantization to conv2d_tranpose and mul ops.)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "quant_axis", "The axis for quantization.", 0));
963 964 965 966 967 968 969
REGISTER_OP_VERSION(moving_average_abs_max_scale)
    .AddCheckpoint(
        R"ROC(Incompatible upgrade of output [Out])ROC",
        paddle::framework::compatible::OpVersionDesc().DeleteOutput(
            "Out",
            "Delete output in order to make the inference model not "
            "save moving_average_abs_max_scale operator. This will "
970
            "make the quantitative model be correctly applied in inference."))
971 972 973 974
    .AddCheckpoint(R"ROC(Incompatible upgrade of output [Out])ROC",
                   paddle::framework::compatible::OpVersionDesc().NewOutput(
                       "Out",
                       "In order to support dygraph qat, add output again."));