fake_quantize_op.cc 33.5 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_quantize_op.h"
16
#include <algorithm>
视言's avatar
视言 已提交
17
#include <string>
18
#include "paddle/fluid/framework/eigen.h"
19
#include "paddle/fluid/framework/op_version_registry.h"
20 21
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/platform/transform.h"
视言's avatar
视言 已提交
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30
template <typename T>
struct Compare {
 public:
  bool operator()(const T a, const T b) { return (std::abs(a) < std::abs(b)); }
};
31 32 33 34 35

template <typename T>
struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx, const T* in,
                  const int num, T* out) {
36
    *out = std::abs(*(std::max_element(in + 0, in + num, Compare<T>())));
37 38 39 40 41
  }
};

template struct FindAbsMaxFunctor<platform::CPUDeviceContext, float>;

42 43
template <typename T>
struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, T> {
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in_tensor, const int quant_axis,
                  T* out_abs_max) {
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
    auto* in_data = in_tensor.data<T>();
    auto in_dims = in_tensor.dims();
    const int64_t channel = in_dims[quant_axis];
    if (quant_axis == 0) {
      const int64_t channel_size = in_tensor.numel() / channel;
      for (int64_t i = 0; i < channel; i++) {
        auto* start = in_data + i * channel_size;
        auto* end = in_data + (i + 1) * channel_size;
        out_abs_max[i] =
            std::abs(*(std::max_element(start, end, Compare<T>())));
      }
    } else if (quant_axis == 1) {
      for (int64_t i = 0; i < channel; i++) {
        out_abs_max[i] = 0;
      }
      const int64_t step_i = in_tensor.numel() / in_dims[0];
      const int64_t step_j = in_tensor.numel() / (in_dims[0] * in_dims[1]);
      for (int64_t i = 0; i < in_dims[0]; i++) {
        for (int64_t j = 0; j < in_dims[1]; j++) {
          auto* start = in_data + i * step_i + j * step_j;
          auto* end = in_data + i * step_i + (j + 1) * step_j;
          T abs_max = std::abs(*(std::max_element(start, end, Compare<T>())));
          out_abs_max[j] = std::max(out_abs_max[j], abs_max);
        }
      }
79 80 81 82 83 84
    }
  }
};

template struct FindChannelAbsMaxFunctor<platform::CPUDeviceContext, float>;

85 86 87 88 89 90
template <typename T>
struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    T s = scale.data<T>()[0];
91
    T inv_s = inverse(s);
92 93 94 95
    platform::Transform<platform::CPUDeviceContext> trans;
    trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
          out->mutable_data<T>(ctx.GetPlace()), ClipFunctor<T>(-s, s));
    auto out_e = framework::EigenVector<T>::Flatten(*out);
96
    out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
97 98 99 100 101
  }
};

template struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, float>;

102 103 104 105 106 107
template <typename T>
struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, framework::Tensor* out) {
    T s = scale.data<T>()[0];
108 109
    T inv_s = inverse(s);

110 111 112 113 114
    platform::Transform<platform::CPUDeviceContext> trans;
    trans(ctx, in.data<T>(), in.data<T>() + in.numel(),
          out->mutable_data<T>(ctx.GetPlace()), ClipFunctor<T>(-s, s));
    auto out_e = framework::EigenVector<T>::Flatten(*out);
    out_e.device(*ctx.eigen_device()) =
115
        (bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
116 117 118 119 120
  }
};
template struct ClipAndFakeQuantDequantFunctor<platform::CPUDeviceContext,
                                               float>;

121 122 123 124
template <typename T>
struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
125
                  const int bin_cnt, const int quant_axis,
126
                  framework::Tensor* out) {
127 128 129 130 131 132 133
    // At present, channelwise quantization supports conv2d, depthwise_conv2d
    // conv2d_transpose and mul
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
134 135 136
    auto* scale_data = scale.data<T>();
    auto* in_data = in.data<T>();
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
137 138
    auto in_dims = in.dims();
    const int64_t channel = in_dims[quant_axis];
139
    platform::Transform<platform::CPUDeviceContext> trans;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    if (quant_axis == 0) {
      const int64_t channel_size = in.numel() / channel;
      for (int64_t i = 0; i < channel; i++) {
        T s = scale_data[i];
        auto* start = in_data + i * channel_size;
        auto* end = in_data + (i + 1) * channel_size;
        trans(ctx, start, end, out_data + i * channel_size,
              ClipFunctor<T>(-s, s));
      }
      for (int64_t i = 0; i < channel; i++) {
        T s = scale_data[i];
        T inv_s = inverse(s);
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
        out_e.device(*ctx.eigen_device()) = (bin_cnt * inv_s * out_e).round();
      }
    } else if (quant_axis == 1) {
      const int64_t step_i = in.numel() / in_dims[0];
      const int64_t step_j = in.numel() / (in_dims[0] * in_dims[1]);
      for (int i = 0; i < in_dims[0]; i++) {
        for (int j = 0; j < in_dims[1]; j++) {
          T s = scale_data[j];
          T inv_s = inverse(s);
          auto* start = in_data + i * step_i + j * step_j;
          auto* end = in_data + i * step_i + (j + 1) * step_j;
          auto* cur_out_data = out_data + i * step_i + j * step_j;
          trans(ctx, start, end, cur_out_data, ClipFunctor<T>(-s, s));
          for (int k = 0; k < step_j; k++) {
            cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]);
          }
        }
      }
172 173 174 175 176 177
    }
  }
};

template struct ChannelClipAndFakeQuantFunctor<platform::CPUDeviceContext,
                                               float>;
H
huangxu96 已提交
178 179 180 181 182 183 184 185 186 187 188
template <typename T>
struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& scale,
                  const int bin_cnt, const int quant_axis,
                  framework::Tensor* out) {
    PADDLE_ENFORCE_EQ(
        quant_axis == 0 || quant_axis == 1, true,
        platform::errors::InvalidArgument("'quant_axis' should be 0 or 1, but "
                                          "the received is %d",
                                          quant_axis));
189

H
huangxu96 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    auto* scale_data = scale.data<T>();
    auto* in_data = in.data<T>();
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
    auto in_dims = in.dims();
    const int64_t channel = in_dims[quant_axis];
    platform::Transform<platform::CPUDeviceContext> trans;
    if (quant_axis == 0) {
      const int64_t channel_size = in.numel() / channel;
      for (int i = 0; i < channel; i++) {
        T s = scale_data[i];
        auto* start = in_data + i * channel_size;
        auto* end = in_data + (i + 1) * channel_size;
        trans(ctx, start, end, out_data + i * channel_size,
              ClipFunctor<T>(-s, s));
      }
      for (int i = 0; i < channel; i++) {
        T s = scale_data[i];
        T inv_s = inverse(s);
        framework::Tensor one_channel_out = out->Slice(i, i + 1);
        auto out_e = framework::EigenVector<T>::Flatten(one_channel_out);
        out_e.device(*ctx.eigen_device()) =
            (bin_cnt * inv_s * out_e).round() * s / static_cast<T>(bin_cnt);
      }
    } else if (quant_axis == 1) {
      const int64_t step_i = in.numel() / in_dims[0];
      const int64_t step_j = in.numel() / (in_dims[0] * in_dims[1]);
      for (int i = 0; i < in_dims[0]; i++) {
        for (int j = 0; j < in_dims[1]; j++) {
          T s = scale_data[j];
          T inv_s = inverse(s);
          auto* start = in_data + i * step_i + j * step_j;
          auto* end = in_data + i * step_i + (j + 1) * step_j;
          auto* cur_out_data = out_data + i * step_i + j * step_j;
          trans(ctx, start, end, cur_out_data, ClipFunctor<T>(-s, s));
          for (int k = 0; k < step_j; k++) {
            cur_out_data[k] = std::round(bin_cnt * inv_s * cur_out_data[k]) *
                              s / static_cast<T>(bin_cnt);
          }
        }
      }
    }
  }
};

template struct ChannelClipFakeQuantDequantFunctor<platform::CPUDeviceContext,
                                                   float>;
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
template <typename T>
struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& cur_scale,
                  const framework::Tensor& last_scale,
                  const framework::Tensor& iter, const int window_size,
                  framework::Tensor* scales_arr, framework::Tensor* out_scale) {
    T* scale_arr = scales_arr->mutable_data<T>(ctx.GetPlace());
    int64_t it = iter.data<int64_t>()[0];
    int idx = it % window_size;
    T removed = scale_arr[idx];
    T cur = cur_scale.data<T>()[0];
    scale_arr[idx] = cur;

    T max = last_scale.data<T>()[0];
    if (max < cur) {
      max = cur;
    } else if (fabs(removed - max) < 1e-6) {
      int size = (it > window_size) ? window_size : it;
      FindAbsMaxFunctor<platform::CPUDeviceContext, T>()(ctx, scale_arr, size,
                                                         &max);
    }
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = max;
  }
};

template struct FindRangeAbsMaxFunctor<platform::CPUDeviceContext, float>;

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
template <typename T>
struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in_accum,
                  const framework::Tensor& in_state, const T* cur_scale,
                  const float rate, framework::Tensor* out_state,
                  framework::Tensor* out_accum, framework::Tensor* out_scale) {
    T accum = in_accum.data<T>()[0];
    T state = in_state.data<T>()[0];
    T scale = cur_scale[0];

    state = rate * state + 1;
    accum = rate * accum + scale;
    scale = accum / state;

    out_state->mutable_data<T>(ctx.GetPlace())[0] = state;
    out_accum->mutable_data<T>(ctx.GetPlace())[0] = accum;
    out_scale->mutable_data<T>(ctx.GetPlace())[0] = scale;
  }
};

template struct FindMovingAverageAbsMaxFunctor<platform::CPUDeviceContext,
                                               float>;

288
class FakeQuantOrWithDequantAbsMaxOp : public framework::OperatorWithKernel {
视言's avatar
视言 已提交
289
 public:
290 291 292 293
  FakeQuantOrWithDequantAbsMaxOp(const std::string& type,
                                 const framework::VariableNameMap& inputs,
                                 const framework::VariableNameMap& outputs,
                                 const framework::AttributeMap& attrs)
视言's avatar
视言 已提交
294 295
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

296
  void InferShape(framework::InferShapeContext* ctx) const override {
297 298
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeQuantOrWithDequantAbsMaxOp");
299
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
300
                   "FakeQuantOrWithDequantAbsMaxOp");
301
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
302
                   "FakeQuantOrWithDequantAbsMaxOp");
视言's avatar
视言 已提交
303
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
304
    ctx->SetOutputDim("OutScale", {1});
视言's avatar
视言 已提交
305 306
    ctx->ShareLoD("X", /*->*/ "Out");
  }
307 308 309 310

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
311 312 313
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
314
  }
视言's avatar
视言 已提交
315 316
};

317 318
class FakeQuantOrWithDequantAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
视言's avatar
视言 已提交
319 320
 public:
  void Make() override {
321 322 323 324 325
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current scale");
视言's avatar
视言 已提交
326 327
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
328
        .AddCustomChecker([](const int& bit_length) {
329 330 331 332 333
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
视言's avatar
视言 已提交
334 335
        });
    AddComment(R"DOC(
336
This is a Base Op which supports FakeQuantAbsMaxOpMaker and FakeQuantDequantAbsMaxOpMaker.
337
FakeQuantAbsMaxOp operator is used in the dynamic quantization.
视言's avatar
视言 已提交
338

339
$$scale = max(abs(X))$$
340 341
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
342

343
FakeQuantDequantAbsMaxOp operator does the abs_max quantization and then dequantization.
344 345 346 347 348

$$scale = max(abs(X))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range) * scale / range$$

349 350 351
)DOC");
  }
};
视言's avatar
视言 已提交
352

Z
Zhen Wang 已提交
353 354 355 356 357
class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
358 359 360 361 362 363
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeChannelWiseQuantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeChannelWiseQuantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "FakeChannelWiseQuantizeAbsMax");
364
    int quant_axis = ctx->Attrs().Get<int>("quant_axis");
Z
Zhen Wang 已提交
365
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
366
    ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
Z
Zhen Wang 已提交
367 368 369 370 371 372
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
373 374
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Z
Zhen Wang 已提交
375 376 377 378 379 380 381 382 383 384 385
  }
};

class FakeChannelWiseQuantizeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized low level tensor, "
              "but also saved as float data type.");
386
    AddOutput("OutScale", "(Tensor) Current channel wise scale");
387 388 389 390 391 392 393 394 395 396 397 398
    AddAttr<int>("quant_axis",
                 "(int, default 0) The axis for quantization. "
                 "For conv2d, depthwise_conv2d, conv2d_transpose "
                 "and mul, the quant_axis is equal to the cout axis.")
        .SetDefault(0)
        .AddCustomChecker([](const int& quant_axis) {
          PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1, true,
                            platform::errors::InvalidArgument(
                                "'quant_axis' should be 0 or 1, but "
                                "the received is %d",
                                quant_axis));
        });
Z
Zhen Wang 已提交
399 400 401
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
402 403 404 405 406
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
Z
Zhen Wang 已提交
407
        });
408 409 410 411
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
Z
Zhen Wang 已提交
412 413 414 415 416
    AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.

$$scale_c = max(abs(X_c))$$
Z
Zhen Wang 已提交
417 418
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c})$$
Z
Zhen Wang 已提交
419
In above three formulas, the range value of c is as follow:
Z
Zhen Wang 已提交
420
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
Z
Zhen Wang 已提交
421 422 423 424
)DOC");
  }
};

H
huangxu96 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
class FakeChannelWiseQuantizeDequantizeAbsMaxOp
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "FakeChannelWiseQuantizeDequantizeAbsMax");
    int quant_axis = ctx->Attrs().Get<int>("quant_axis");
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {ctx->GetInputDim("X")[quant_axis]});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddOutput("Out",
              "(Tensor) Output of quantized and dequantized low level tensor, "
              "saved as float data type.");
    AddOutput("OutScale", "(Tensor) Current channel wise scale");
    AddAttr<int>("quant_axis",
                 "(int, default 0) The axis for quantization. "
                 "For conv2d, depthwise_conv2d, conv2d_transpose "
                 "and mul, the quant_axis is equal to the cout axis.")
        .SetDefault(0)
        .AddCustomChecker([](const int& quant_axis) {
          PADDLE_ENFORCE_EQ(quant_axis == 0 || quant_axis == 1, true,
                            platform::errors::InvalidArgument(
                                "'quant_axis' should be 0 or 1, but "
                                "the received is %d",
                                quant_axis));
        });
    AddAttr<int>("bit_length", "(int, default 8)")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
        });
    AddComment(R"DOC(
The scale of FakeChannelWiseQuantize operator is a vector.
In detail, each channel of the input X has a scale value.

$$scale_c = max(abs(X_c))$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out_c = round(\frac{X_c * range} {scale_c}) * \frac{scale_c} {range}$$
In above three formulas, the range value of c is as follow:
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
)DOC");
  }
};

494 495 496 497 498 499 500
class FakeQuantizeRangeAbsMaxOp : public framework::OperatorWithKernel {
 public:
  FakeQuantizeRangeAbsMaxOp(const std::string& type,
                            const framework::VariableNameMap& inputs,
                            const framework::VariableNameMap& outputs,
                            const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
视言's avatar
视言 已提交
501

502
  void InferShape(framework::InferShapeContext* ctx) const override {
503 504 505 506 507
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FakeQuantizeRangeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeQuantizeRangeAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "FakeQuantizeRangeAbsMax");
508 509 510 511 512 513 514 515
    if (ctx->HasOutput("OutScales")) {
      int window_size = ctx->Attrs().Get<int>("window_size");
      ctx->SetOutputDim("OutScales", {window_size});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }
视言's avatar
视言 已提交
516

517 518 519
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
520 521 522
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
523 524
  }
};
视言's avatar
视言 已提交
525

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
class FakeQuantizeRangeAbsMaxOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("Iter", "Global step iteration.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutScales", "(Tensor) scale buffer.").AsDispensable();
    AddAttr<int>("window_size", "(int, default 10000) window range size.")
        .SetDefault(10000);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
541 542 543 544 545
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
546
        });
547 548 549 550
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
551 552
    AddComment(R"DOC(
FakeQuantize operator is used in static quantization.
视言's avatar
视言 已提交
553

554
$$scale = max(max(abs(x)), history_abs_max)$$
555 556
$$range = 2^{bit_length - 1} - 1$$
$$Out = round(X/scale * range)$$
视言's avatar
视言 已提交
557 558 559 560 561

)DOC");
  }
};

562 563
class FakeQuantOrWithDequantMovingAverageAbsMaxOp
    : public framework::OperatorWithKernel {
564
 public:
565 566 567 568
  FakeQuantOrWithDequantMovingAverageAbsMaxOp(
      const std::string& type, const framework::VariableNameMap& inputs,
      const framework::VariableNameMap& outputs,
      const framework::AttributeMap& attrs)
569 570 571
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
572 573 574 575 576 577
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "FakeQuantOrWithDequantMovingAverageAbsMax");
578 579 580 581 582 583 584 585 586 587 588 589 590 591
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->SetOutputDim("OutScale", {1});
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
592 593 594
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
595 596 597
  }
};

598
class FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InScale", "Last scale.");
    AddInput("InAccum", "Last accum.").AsDispensable();
    AddInput("InState", "Last state.").AsDispensable();
    AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
    AddOutput("OutScale", " Current scale");
    AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
    AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
    AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
        .SetDefault(0.9);
    AddAttr<int>("bit_length", "(int, default 8), quantization bit number.")
        .SetDefault(8)
        .AddCustomChecker([](const int& bit_length) {
615 616 617 618 619
          PADDLE_ENFORCE_EQ(bit_length >= 1 && bit_length <= 16, true,
                            platform::errors::InvalidArgument(
                                "'bit_length' should be between 1 and 16, but "
                                "the received is %d",
                                bit_length));
620 621 622 623 624 625
        });
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddComment(R"DOC(
626
This is a Base Op which supports FakeQuantMovingAverageAbsMaxOp and FakeQuantDequantMovingAverageAbsMaxOp.
627
FakeQuantMovingAverageAbsMaxOp operator is used in the static quantization.
628

Z
Zhen Wang 已提交
629 630
$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
631 632
$$Out = round(X/scale * range)$$

633
FakeQuantDequantMovingAverageAbsMaxOp operator does the moving_average_abs_max quant and then dequant.
634 635 636 637 638

$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$range = 2^{bit\_length - 1} - 1$$
$$Out = round(X/scale * range) * scale / range$$

639 640 641 642
)DOC");
  }
};

Z
Zhen Wang 已提交
643 644 645 646 647
class MovingAverageAbsMaxScaleOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
648 649 650 651
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
                   "MovingAverageAbsMaxScale");
    OP_INOUT_CHECK(ctx->HasOutput("OutScale"), "Output", "OutScale",
                   "MovingAverageAbsMaxScale");
Z
Zhen Wang 已提交
652 653 654 655 656 657 658 659 660 661 662 663
    if (ctx->HasOutput("OutState")) {
      ctx->SetOutputDim("OutState", {1});
    }
    if (ctx->HasOutput("OutAccum")) {
      ctx->SetOutputDim("OutAccum", {1});
    }
    ctx->SetOutputDim("OutScale", {1});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
664 665
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Z
Zhen Wang 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
  }
};

class MovingAverageAbsMaxScaleOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) Input is float data type.");
    AddInput("InAccum", "Last accum.").AsDispensable();
    AddInput("InState", "Last state.").AsDispensable();
    AddOutput("OutScale", " Current scale");
    AddOutput("OutState", "(Tensor) state buffer.").AsDispensable();
    AddOutput("OutAccum", "(Tensor) accum buffer.").AsDispensable();
    AddAttr<float>("moving_rate", "(float, default 0.9) moving rate.")
        .SetDefault(0.9);
    AddAttr<bool>("is_test",
                  "(bool, default false) Set true for inference only and false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddComment(R"DOC(
MovingAverageAbsMaxScale operator is only used for calculating the quantization scale.
And it will not quantize the input tensor.

$$scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)$$
$$Out = X$$

)DOC");
  }
};

696 697 698 699 700 701
class FakeQuantDequantGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
702
    auto x_grad_name = framework::GradVarName("X");
703 704
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
                   "FakeQuantDequantGradOp");
705 706
    OP_INOUT_CHECK(ctx->HasOutput(x_grad_name), "Output", x_grad_name,
                   "FakeQuantDequantGradOp");
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732

    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim(out_grad_name));
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename T>
class FakeQuantDequantGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("fake_quantize_dequantize_grad");
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

视言's avatar
视言 已提交
733 734 735 736
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
737 738
using CPU = paddle::platform::CPUDeviceContext;

H
hong 已提交
739
REGISTER_OPERATOR(
740 741
    fake_quantize_abs_max, ops::FakeQuantOrWithDequantAbsMaxOp,
    ops::FakeQuantOrWithDequantAbsMaxOpMaker,
H
hong 已提交
742 743
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
744 745
REGISTER_OP_CPU_KERNEL(fake_quantize_abs_max,
                       ops::FakeQuantizeAbsMaxKernel<CPU, float>);
视言's avatar
视言 已提交
746

747 748 749 750 751 752 753 754
REGISTER_OPERATOR(fake_quantize_dequantize_abs_max,
                  ops::FakeQuantOrWithDequantAbsMaxOp,
                  ops::FakeQuantOrWithDequantAbsMaxOpMaker,
                  ops::FakeQuantDequantGradMaker<paddle::framework::OpDesc>,
                  ops::FakeQuantDequantGradMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(fake_quantize_dequantize_abs_max,
                       ops::FakeQuantizeDequantizeAbsMaxKernel<CPU, float>);

H
hong 已提交
755 756 757 758 759
REGISTER_OPERATOR(
    fake_quantize_range_abs_max, ops::FakeQuantizeRangeAbsMaxOp,
    ops::FakeQuantizeRangeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
760 761
REGISTER_OP_CPU_KERNEL(fake_quantize_range_abs_max,
                       ops::FakeQuantizeRangeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
762

H
hong 已提交
763 764 765 766 767 768
REGISTER_OPERATOR(
    fake_quantize_moving_average_abs_max,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
    ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
769 770
REGISTER_OP_CPU_KERNEL(fake_quantize_moving_average_abs_max,
                       ops::FakeQuantizeMovingAverageAbsMaxKernel<CPU, float>);
771

772 773 774 775 776
REGISTER_OPERATOR(fake_quantize_dequantize_moving_average_abs_max,
                  ops::FakeQuantOrWithDequantMovingAverageAbsMaxOp,
                  ops::FakeQuantOrWithDequantMovingAverageAbsMaxOpMaker,
                  ops::FakeQuantDequantGradMaker<paddle::framework::OpDesc>,
                  ops::FakeQuantDequantGradMaker<paddle::imperative::OpBase>);
777 778 779 780
REGISTER_OP_CPU_KERNEL(
    fake_quantize_dequantize_moving_average_abs_max,
    ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CPU, float>);

H
hong 已提交
781 782 783 784 785
REGISTER_OPERATOR(
    fake_channel_wise_quantize_abs_max, ops::FakeChannelWiseQuantizeAbsMaxOp,
    ops::FakeChannelWiseQuantizeAbsMaxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
786 787
REGISTER_OP_CPU_KERNEL(fake_channel_wise_quantize_abs_max,
                       ops::FakeChannelWiseQuantizeAbsMaxKernel<CPU, float>);
Z
Zhen Wang 已提交
788

H
hong 已提交
789 790 791 792 793
REGISTER_OPERATOR(
    moving_average_abs_max_scale, ops::MovingAverageAbsMaxScaleOp,
    ops::MovingAverageAbsMaxScaleOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
Z
Zhen Wang 已提交
794 795
REGISTER_OP_CPU_KERNEL(moving_average_abs_max_scale,
                       ops::MovingAverageAbsMaxScaleKernel<CPU, float>);
796 797 798 799

REGISTER_OPERATOR(fake_quantize_dequantize_grad, ops::FakeQuantDequantGradOp);
REGISTER_OP_CPU_KERNEL(fake_quantize_dequantize_grad,
                       ops::FakeQuantDequantGradKernel<CPU, float>);
H
huangxu96 已提交
800 801 802 803 804 805 806 807 808

REGISTER_OPERATOR(fake_channel_wise_quantize_dequantize_abs_max,
                  ops::FakeChannelWiseQuantizeDequantizeAbsMaxOp,
                  ops::FakeChannelWiseQuantizeDequantizeAbsMaxOpMaker,
                  ops::FakeQuantDequantGradMaker<paddle::framework::OpDesc>,
                  ops::FakeQuantDequantGradMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(
    fake_channel_wise_quantize_dequantize_abs_max,
    ops::FakeChannelWiseQuantizeDequantizeAbsMaxKernel<CPU, float>);
809 810 811 812 813 814 815

REGISTER_OP_VERSION(fake_channel_wise_quantize_abs_max)
    .AddCheckpoint(
        R"ROC(add new attributes [quant_axis] for applying per-channel "
        "quantization to conv2d_tranpose and mul ops.)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "quant_axis", "The axis for quantization.", 0));