decorator.py 19.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15 16
from threading import Thread
import subprocess
Q
Qiao Longfei 已提交
17
import multiprocessing
18
import six
Q
Qiao Longfei 已提交
19
import sys
T
tangwei12 已提交
20

21
from six.moves.queue import Queue
22
from six.moves import zip_longest
23 24
from six.moves import map
from six.moves import zip
25 26
import itertools
import random
T
tangwei12 已提交
27
import zlib
M
minqiyang 已提交
28
import paddle.compat as cpt
29

30 31 32 33 34 35 36 37 38 39
# On macOS, the 'spawn' start method is now the default in Python3.8 multiprocessing,
# Paddle is currently unable to solve this, so forces the process to start using 
# the 'fork' start method.
#
# TODO: This solution is not good, because the fork start method could lead to 
# crashes of the subprocess. Figure out how to make 'spawn' work.
#
# For more details, please refer to
# https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
# https://bugs.python.org/issue33725
40
if sys.version_info >= (3, 8) and sys.platform == 'darwin':
41 42 43 44
    fork_context = multiprocessing.get_context('fork')
else:
    fork_context = multiprocessing

45

S
sneaxiy 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58
def cache(reader):
    """
    Cache the reader data into memory. 

    Be careful that this method may take long time to process, 
    and consume lots of memory. :code:`reader()` would only 
    call once. 

    Args:
        reader (generator): a reader object which yields 
            data each time.

    Returns:
S
sneaxiy 已提交
59
        generator: a decorated reader object which yields data from cached memory.
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    
    Examples:
        .. code-block:: python

            import paddle
            
            def reader():
                for i in range(3):
                    yield i
            
            # All data is cached into memory
            cached_reader = paddle.io.cache(reader)
            
            # Output: 0 1 2
            for i in cached_reader():
                print(i)
S
sneaxiy 已提交
76 77 78 79 80 81 82 83 84 85
    """
    all_data = tuple(reader())

    def __impl__():
        for item in all_data:
            yield item

    return __impl__


H
Helin Wang 已提交
86 87 88
def map_readers(func, *readers):
    """
    Creates a data reader that outputs return value of function using
89
    output of each data reader as arguments.
H
Helin Wang 已提交
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    If input readers output the following data entries: 2 3,
    and the input func is mul(x, y),
    the output of the resulted reader will be 6.


    Args:
        func: a function to read data and compute result, the output of this function 
              will be set as the output of the resulted data reader.
        readers (Reader|list of Reader): list of readers whose outputs will be used as arguments of func.
 
    Returns:
        the resulted data reader (Reader)

    Examples:

        .. code-block:: python

         import paddle.reader
         d = {"h": 0, "i": 1}
         def func(x):
             return d[x]
         def reader():
             yield "h"
             yield "i"
         map_reader_result = paddle.reader.map_readers(func, reader)
H
Helin Wang 已提交
116 117 118 119 120 121
    """

    def reader():
        rs = []
        for r in readers:
            rs.append(r())
122
        for e in map(func, *rs):
H
Helin Wang 已提交
123 124 125 126 127
            yield e

    return reader


H
Helin Wang 已提交
128
def shuffle(reader, buf_size):
129
    """
130 131
    paddle.fluid.io.shuffle ( :ref:`api_fluid_io_shuffle` ) is recommended to use,
    and paddle.reader.shuffle is an alias.
132

133
    This API creates a decorated reader that outputs the shuffled data.
134

135 136 137 138 139 140
    The output data from the origin reader will be saved into a buffer, 
    and then shuffle the data. The size of buffer is determined by argument buf_size.
 
    Args:
        reader(callable): the original reader whose data will be shuffled.
        buf_size(int): the size of shuffled buffer.
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    Returns:
        callable: a decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(5):
                    yield i
            shuffled_reader = fluid.io.shuffle(reader, 3)
            for e in shuffled_reader():
                print(e)
            # outputs are 0~4 unordered arrangement
157 158
    """

H
Helin Wang 已提交
159
    def data_reader():
160
        buf = []
H
Helin Wang 已提交
161
        for e in reader():
162 163 164 165 166 167 168 169 170 171 172 173
            buf.append(e)
            if len(buf) >= buf_size:
                random.shuffle(buf)
                for b in buf:
                    yield b
                buf = []

        if len(buf) > 0:
            random.shuffle(buf)
            for b in buf:
                yield b

H
Helin Wang 已提交
174
    return data_reader
175 176


H
Helin Wang 已提交
177
def chain(*readers):
178
    """
179
    Use the input data readers to create a chained data reader. The new created reader
180 181
    chains the outputs of input readers together as its output, and it do not change
    the format of the outputs.
182

183 184 185 186 187 188 189 190
    **Note**:
        ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
        ``paddle.fluid.io.chain`` is recommended to use.

    For example, if three input readers' outputs are as follows:
    [0, 0, 0],
    [10, 10, 10],
    [20, 20, 20].
H
Helin Wang 已提交
191
    The chained reader will output:
192
    [0, 0, 0], [10, 10, 10], [20, 20, 20].
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

    Args:
        readers(list): input data readers.

    Returns:
        callable: the new chained data reader.

    Examples:
        ..  code-block:: python

            import paddle

            def reader_creator_3(start):
                def reader():
                    for i in range(start, start + 3):
                        yield [i, i, i]
                return reader

            c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
            for e in c():
                print(e)
            # Output:
            # [0, 0, 0]
            # [1, 1, 1]
            # [2, 2, 2]
            # [10, 10, 10]
            # [11, 11, 11]
            # [12, 12, 12]
            # [20, 20, 20]
            # [21, 21, 21]
            # [22, 22, 22]
224 225 226

    """

H
Helin Wang 已提交
227
    def reader():
228
        rs = []
H
Helin Wang 已提交
229
        for r in readers:
230 231 232 233 234
            rs.append(r())

        for e in itertools.chain(*rs):
            yield e

H
Helin Wang 已提交
235
    return reader
236 237


H
Helin Wang 已提交
238
class ComposeNotAligned(ValueError):
239 240 241
    pass


H
Helin Wang 已提交
242
def compose(*readers, **kwargs):
243 244
    """
    Creates a data reader whose output is the combination of input readers.
245

H
Helin Wang 已提交
246
    If input readers output following data entries:
247
    (1, 2)    3    (4, 5)
H
Helin Wang 已提交
248
    The composed reader will output:
249 250
    (1, 2, 3, 4, 5)

H
huzhiqiang 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    Args:
        readers (Reader|list of Reader): readers that will be composed together. 
        check_alignment(bool, optional): Indicates whether the input readers are checked for
                              alignment. If True, whether input readers are aligned
                              correctly will be checked, else alignment will not be checkout and trailing outputs
                              will be discarded. Defaults to True.

    Returns: 
        the new data reader (Reader).

    Raises:
        ComposeNotAligned: outputs of readers are not aligned. This will not raise if check_alignment is set to False.
  
    Examples:
        .. code-block:: python
266

H
huzhiqiang 已提交
267 268 269 270 271 272 273
          import paddle.fluid as fluid
          def reader_creator_10(dur):
              def reader():
                 for i in range(10):
                     yield i
              return reader
          reader = fluid.io.compose(reader_creator_10(0), reader_creator_10(0))
274 275 276 277 278 279 280 281 282
    """
    check_alignment = kwargs.pop('check_alignment', True)

    def make_tuple(x):
        if isinstance(x, tuple):
            return x
        else:
            return (x, )

H
Helin Wang 已提交
283
    def reader():
284
        rs = []
H
Helin Wang 已提交
285
        for r in readers:
286 287
            rs.append(r())
        if not check_alignment:
288 289
            for outputs in zip(*rs):
                yield sum(list(map(make_tuple, outputs)), ())
290
        else:
291
            for outputs in zip_longest(*rs):
292 293 294
                for o in outputs:
                    if o is None:
                        # None will be not be present if compose is aligned
H
Helin Wang 已提交
295 296
                        raise ComposeNotAligned(
                            "outputs of readers are not aligned.")
297
                yield sum(list(map(make_tuple, outputs)), ())
298

H
Helin Wang 已提交
299
    return reader
300 301


H
Helin Wang 已提交
302
def buffered(reader, size):
303 304
    """
    Creates a buffered data reader.
305

H
Helin Wang 已提交
306 307
    The buffered data reader will read and save data entries into a
    buffer. Reading from the buffered data reader will proceed as long
308
    as the buffer is not empty.
309

310 311 312 313 314 315 316 317 318
    Args:
        reader(generator): the data reader to read from.
        size(int): max buffer size.

    Returns:
        generator: the buffered data reader.
    
    Examples:
        .. code-block:: python
319

320 321 322 323 324 325 326 327 328 329 330 331
            import paddle
            
            def reader():
                for i in range(3):
                    yield i
            
            # Create a buffered reader, and the buffer size is 2.
            buffered_reader = paddle.io.buffered(reader, 2)
            
            # Output: 0 1 2
            for i in buffered_reader():
                print(i)
332 333 334 335 336 337 338 339 340 341 342 343
    """

    class EndSignal():
        pass

    end = EndSignal()

    def read_worker(r, q):
        for d in r:
            q.put(d)
        q.put(end)

H
Helin Wang 已提交
344 345
    def data_reader():
        r = reader()
346
        q = Queue(maxsize=size)
347 348 349 350 351 352 353 354 355 356 357
        t = Thread(
            target=read_worker, args=(
                r,
                q, ))
        t.daemon = True
        t.start()
        e = q.get()
        while e != end:
            yield e
            e = q.get()

H
Helin Wang 已提交
358
    return data_reader
Y
Yu Yang 已提交
359 360


Y
Yu Yang 已提交
361
def firstn(reader, n):
Y
Yu Yang 已提交
362
    """
363 364 365 366 367
    paddle.fluid.io.firstn ( :ref:`api_fluid_io_firstn` ) is recommended to use,
    and paddle.reader.firstn is an alias.
    
    This API creates a decorated reader, and limits the max number of 
    samples that reader could return.
Y
Yu Yang 已提交
368

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    Args:
        reader(callable): the input reader.
        n(int): the max number of samples in the reader.

    Returns:
        callable: the decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(100):
                    yield i
            firstn_reader = fluid.io.firstn(reader, 5)
            for e in firstn_reader():
                print(e)
            # the outputs are: 0 1 2 3 4  
Y
Yu Yang 已提交
388 389
    """

Y
Yu Yang 已提交
390 391 392 393
    # TODO(yuyang18): Check if just drop the reader, could clean the opened
    # resource or not?

    def firstn_reader():
Y
Yu Yang 已提交
394
        for i, item in enumerate(reader()):
Y
Yu Yang 已提交
395
            if i == n:
Y
Yu Yang 已提交
396 397 398
                break
            yield item

Y
Yu Yang 已提交
399
    return firstn_reader
400 401 402 403 404 405


class XmapEndSignal():
    pass


406
def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
407
    """
Z
Zeng Jinle 已提交
408 409 410 411 412 413 414 415 416 417 418 419
    Use multi-threads to map samples from reader by a mapper defined by user.

    Args:
        mapper (callable): a function to map the data from reader.
        reader (callable): a data reader which yields the data. 
        process_num (int): thread number to handle original sample.
        buffer_size (int): size of the queue to read data in. 
        order (bool): whether to keep the data order from original reader. 
            Default False.

    Returns:
        callable: a decorated reader with data mapping. 
420 421
    """
    end = XmapEndSignal()
W
wanghaoshuang 已提交
422

423 424 425 426 427
    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)
W
wanghaoshuang 已提交
428

429 430 431 432
    # define a worker to read samples from reader to in_queue with order flag
    def order_read_worker(reader, in_queue):
        in_order = 0
        for i in reader():
W
wanghaoshuang 已提交
433 434
            in_queue.put((in_order, i))
            in_order += 1
435
        in_queue.put(end)
436 437 438 439 440 441 442 443 444 445 446

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, XmapEndSignal):
            r = mapper(sample)
            out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
W
wanghaoshuang 已提交
447

448 449 450 451 452 453 454 455 456 457
    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue by order
    def order_handle_worker(in_queue, out_queue, mapper, out_order):
        ins = in_queue.get()
        while not isinstance(ins, XmapEndSignal):
            order, sample = ins
            r = mapper(sample)
            while order != out_order[0]:
                pass
            out_queue.put(r)
W
wanghaoshuang 已提交
458
            out_order[0] += 1
459 460 461
            ins = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
462 463

    def xreader():
464 465
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
466 467 468 469 470 471 472 473 474 475 476
        out_order = [0]
        # start a read worker in a thread
        target = order_read_worker if order else read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = order_handle_worker if order else handle_worker
        args = (in_queue, out_queue, mapper, out_order) if order else (
            in_queue, out_queue, mapper)
        workers = []
477
        for i in range(process_num):
478 479 480 481 482 483
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

484 485 486 487 488 489 490 491 492 493 494 495 496
        sample = out_queue.get()
        while not isinstance(sample, XmapEndSignal):
            yield sample
            sample = out_queue.get()
        finish = 1
        while finish < process_num:
            sample = out_queue.get()
            if isinstance(sample, XmapEndSignal):
                finish += 1
            else:
                yield sample

    return xreader
497 498


Q
Qiao Longfei 已提交
499 500
def multiprocess_reader(readers, use_pipe=True, queue_size=1000):
    """
501 502
    This API use python ``multiprocessing`` to read data from ``readers`` parallelly,
    and then ``multiprocess.Queue`` or ``multiprocess.Pipe`` is used to merge 
T
tianshuo78520a 已提交
503
    these data. A separate process will be created for each reader in the 
504 505 506 507
    ``readers`` list, please guarantee every reader can work independently 
    to avoid conflicts in parallel environment.
    

T
tianshuo78520a 已提交
508
    ``Multiprocess.Queue`` require the rw access right to /dev/shm, and it's not supported 
509
    in some platforms.
Q
Qiao Longfei 已提交
510

511 512 513 514 515 516 517 518
    Parameters:
       readers (list( ``generator`` ) | tuple( ``generator`` )): a python ``generator`` list 
           used to read input data
       use_pipe (bool, optional): control the inner API used to implement the multi-processing,
           default True - use ``multiprocess.Pipe`` which is recommended
       queue_size (int, optional): only useful when ``use_pipe`` is False - ``multiprocess.Queue``
           is used, default 1000. Increase this value can speed up the data reading, and more memory
           will be consumed.
Q
Qiao Longfei 已提交
519

520 521
    Returns:
        ``generator``: a new reader which can be run parallelly
Q
Qiao Longfei 已提交
522

523 524

    Example:
Q
Qiao Longfei 已提交
525 526 527

    .. code-block:: python

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        import paddle.fluid as fluid
        from paddle.fluid.io import multiprocess_reader
        import numpy as np
        
        sample_files = ['sample_file_1', 'sample_file_2']
        
        def fake_input_files():
            with open(sample_files[0], 'w') as f:
               np.savez(f, a=np.array([1, 2]), b=np.array([3, 4]), c=np.array([5, 6]), d=np.array([7, 8]))
            with open(sample_files[1], 'w') as f:
               np.savez(f, a=np.array([9, 10]), b=np.array([11, 12]), c=np.array([13, 14]))
        
        
        def generate_reader(file_name):
            # load data file
            def _impl():
                data = np.load(file_name)
                for item in sorted(data.files):
                    yield data[item],
            return _impl
        
        if __name__ == '__main__':
            # generate sample input files
            fake_input_files()
            
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                place = fluid.CPUPlace()
                # the 1st 2 is batch size
                image = fluid.data(name='image', dtype='int64', shape=[2, 1, 2]) 
                fluid.layers.Print(image)
                # print detailed tensor info of image variable
            
                reader = fluid.io.PyReader(feed_list=[image], capacity=2)
            
                decorated_reader = multiprocess_reader(
                    [generate_reader(sample_files[0]), generate_reader(sample_files[1])], False)
            
                reader.decorate_sample_generator(decorated_reader, batch_size=2, places=[place])
            
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
            
                for data in reader():
                    res = exe.run(feed=data, fetch_list=[image])
                    print(res[0])
                    # print below content in this case
                    # [[[1 2]], [[3 4]]]
                    # [[[5 6]], [[7 8]]]
                    # [[[9 10]], [[11 12]]]
                    # [13,14] will be dropped

Q
Qiao Longfei 已提交
579 580
    """

581 582 583 584
    if sys.platform == 'win32':
        raise NotImplementedError(
            "The multiprocess_reader method is not supported on windows.")

Q
Qiao Longfei 已提交
585 586 587 588 589 590
    try:
        import ujson as json
    except Exception as e:
        sys.stderr.write("import ujson error: " + str(e) + " use json\n")
        import json

591 592
    assert isinstance(readers, (list, tuple)) and len(readers) > 0, (
        "`readers` must be list or tuple.")
Q
Qiao Longfei 已提交
593 594

    def _read_into_queue(reader, queue):
595 596 597 598 599 600 601 602 603
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None")
                queue.put(sample)
            queue.put(None)
        except:
            queue.put("")
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
604 605

    def queue_reader():
606
        queue = fork_context.Queue(queue_size)
Q
Qiao Longfei 已提交
607
        for reader in readers:
608
            p = fork_context.Process(
Q
Qiao Longfei 已提交
609 610 611 612 613 614 615 616 617
                target=_read_into_queue, args=(reader, queue))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
            sample = queue.get()
            if sample is None:
                finish_num += 1
618 619
            elif sample == "":
                raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
620 621 622 623
            else:
                yield sample

    def _read_into_pipe(reader, conn):
624 625 626 627 628 629 630 631 632 633 634
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None!")
                conn.send(json.dumps(sample))
            conn.send(json.dumps(None))
            conn.close()
        except:
            conn.send(json.dumps(""))
            conn.close()
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
635 636 637 638

    def pipe_reader():
        conns = []
        for reader in readers:
639
            parent_conn, child_conn = fork_context.Pipe()
Q
Qiao Longfei 已提交
640
            conns.append(parent_conn)
641
            p = fork_context.Process(
Q
Qiao Longfei 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
                target=_read_into_pipe, args=(reader, child_conn))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        conn_to_remove = []
        while finish_num < reader_num:
            for conn in conn_to_remove:
                conns.remove(conn)
            conn_to_remove = []
            for conn in conns:
                sample = json.loads(conn.recv())
                if sample is None:
                    finish_num += 1
                    conn.close()
                    conn_to_remove.append(conn)
658 659 660 661
                elif sample == "":
                    conn.close()
                    conn_to_remove.append(conn)
                    raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
662 663 664 665 666 667 668
                else:
                    yield sample

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader