decorator.py 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
Helin Wang 已提交
15
__all__ = [
S
sneaxiy 已提交
16
    'cache', 'map_readers', 'buffered', 'compose', 'chain', 'shuffle',
17
    'ComposeNotAligned', 'firstn', 'xmap_readers', 'multiprocess_reader'
H
Helin Wang 已提交
18
]
19

T
tangwei12 已提交
20 21
from threading import Thread
import subprocess
Q
Qiao Longfei 已提交
22
import multiprocessing
23
import six
Q
Qiao Longfei 已提交
24
import sys
T
tangwei12 已提交
25

26
from six.moves.queue import Queue
27
from six.moves import zip_longest
28 29
from six.moves import map
from six.moves import zip
30 31
import itertools
import random
T
tangwei12 已提交
32
import zlib
M
minqiyang 已提交
33
import paddle.compat as cpt
34 35


S
sneaxiy 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
def cache(reader):
    """
    Cache the reader data into memory. 

    Be careful that this method may take long time to process, 
    and consume lots of memory. :code:`reader()` would only 
    call once. 

    Args:
        reader (generator): a reader object which yields 
            data each time.

    Returns:
S
sneaxiy 已提交
49
        generator: a decorated reader object which yields data from cached memory.
S
sneaxiy 已提交
50 51 52 53 54 55 56 57 58 59
    """
    all_data = tuple(reader())

    def __impl__():
        for item in all_data:
            yield item

    return __impl__


H
Helin Wang 已提交
60 61 62
def map_readers(func, *readers):
    """
    Creates a data reader that outputs return value of function using
63
    output of each data reader as arguments.
H
Helin Wang 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    If input readers output the following data entries: 2 3,
    and the input func is mul(x, y),
    the output of the resulted reader will be 6.


    Args:
        func: a function to read data and compute result, the output of this function 
              will be set as the output of the resulted data reader.
        readers (Reader|list of Reader): list of readers whose outputs will be used as arguments of func.
 
    Returns:
        the resulted data reader (Reader)

    Examples:

        .. code-block:: python

         import paddle.reader
         d = {"h": 0, "i": 1}
         def func(x):
             return d[x]
         def reader():
             yield "h"
             yield "i"
         map_reader_result = paddle.reader.map_readers(func, reader)
H
Helin Wang 已提交
90 91 92 93 94 95
    """

    def reader():
        rs = []
        for r in readers:
            rs.append(r())
96
        for e in map(func, *rs):
H
Helin Wang 已提交
97 98 99 100 101
            yield e

    return reader


H
Helin Wang 已提交
102
def shuffle(reader, buf_size):
103
    """
104 105
    paddle.fluid.io.shuffle ( :ref:`api_fluid_io_shuffle` ) is recommended to use,
    and paddle.reader.shuffle is an alias.
106

107
    This API creates a decorated reader that outputs the shuffled data.
108

109 110 111 112 113 114
    The output data from the origin reader will be saved into a buffer, 
    and then shuffle the data. The size of buffer is determined by argument buf_size.
 
    Args:
        reader(callable): the original reader whose data will be shuffled.
        buf_size(int): the size of shuffled buffer.
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    Returns:
        callable: a decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(5):
                    yield i
            shuffled_reader = fluid.io.shuffle(reader, 3)
            for e in shuffled_reader():
                print(e)
            # outputs are 0~4 unordered arrangement
131 132
    """

H
Helin Wang 已提交
133
    def data_reader():
134
        buf = []
H
Helin Wang 已提交
135
        for e in reader():
136 137 138 139 140 141 142 143 144 145 146 147
            buf.append(e)
            if len(buf) >= buf_size:
                random.shuffle(buf)
                for b in buf:
                    yield b
                buf = []

        if len(buf) > 0:
            random.shuffle(buf)
            for b in buf:
                yield b

H
Helin Wang 已提交
148
    return data_reader
149 150


H
Helin Wang 已提交
151
def chain(*readers):
152
    """
153 154
    Use the input data readers to create a chained data reader. The new created reader
    chains the outputs of input readers together as its output.
155

156 157 158 159 160 161 162 163
    **Note**:
        ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
        ``paddle.fluid.io.chain`` is recommended to use.

    For example, if three input readers' outputs are as follows:
    [0, 0, 0],
    [10, 10, 10],
    [20, 20, 20].
H
Helin Wang 已提交
164
    The chained reader will output:
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    [[0, 0, 0], [10, 10, 10], [20, 20, 20]].

    Args:
        readers(list): input data readers.

    Returns:
        callable: the new chained data reader.

    Examples:
        ..  code-block:: python

            import paddle

            def reader_creator_3(start):
                def reader():
                    for i in range(start, start + 3):
                        yield [i, i, i]
                return reader

            c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
            for e in c():
                print(e)
            # Output:
            # [0, 0, 0]
            # [1, 1, 1]
            # [2, 2, 2]
            # [10, 10, 10]
            # [11, 11, 11]
            # [12, 12, 12]
            # [20, 20, 20]
            # [21, 21, 21]
            # [22, 22, 22]
197 198 199

    """

H
Helin Wang 已提交
200
    def reader():
201
        rs = []
H
Helin Wang 已提交
202
        for r in readers:
203 204 205 206 207
            rs.append(r())

        for e in itertools.chain(*rs):
            yield e

H
Helin Wang 已提交
208
    return reader
209 210


H
Helin Wang 已提交
211
class ComposeNotAligned(ValueError):
212 213 214
    pass


H
Helin Wang 已提交
215
def compose(*readers, **kwargs):
216 217
    """
    Creates a data reader whose output is the combination of input readers.
218

H
Helin Wang 已提交
219
    If input readers output following data entries:
220
    (1, 2)    3    (4, 5)
H
Helin Wang 已提交
221
    The composed reader will output:
222 223
    (1, 2, 3, 4, 5)

H
huzhiqiang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    Args:
        readers (Reader|list of Reader): readers that will be composed together. 
        check_alignment(bool, optional): Indicates whether the input readers are checked for
                              alignment. If True, whether input readers are aligned
                              correctly will be checked, else alignment will not be checkout and trailing outputs
                              will be discarded. Defaults to True.

    Returns: 
        the new data reader (Reader).

    Raises:
        ComposeNotAligned: outputs of readers are not aligned. This will not raise if check_alignment is set to False.
  
    Examples:
        .. code-block:: python
239

H
huzhiqiang 已提交
240 241 242 243 244 245 246
          import paddle.fluid as fluid
          def reader_creator_10(dur):
              def reader():
                 for i in range(10):
                     yield i
              return reader
          reader = fluid.io.compose(reader_creator_10(0), reader_creator_10(0))
247 248 249 250 251 252 253 254 255
    """
    check_alignment = kwargs.pop('check_alignment', True)

    def make_tuple(x):
        if isinstance(x, tuple):
            return x
        else:
            return (x, )

H
Helin Wang 已提交
256
    def reader():
257
        rs = []
H
Helin Wang 已提交
258
        for r in readers:
259 260
            rs.append(r())
        if not check_alignment:
261 262
            for outputs in zip(*rs):
                yield sum(list(map(make_tuple, outputs)), ())
263
        else:
264
            for outputs in zip_longest(*rs):
265 266 267
                for o in outputs:
                    if o is None:
                        # None will be not be present if compose is aligned
H
Helin Wang 已提交
268 269
                        raise ComposeNotAligned(
                            "outputs of readers are not aligned.")
270
                yield sum(list(map(make_tuple, outputs)), ())
271

H
Helin Wang 已提交
272
    return reader
273 274


H
Helin Wang 已提交
275
def buffered(reader, size):
276 277
    """
    Creates a buffered data reader.
278

H
Helin Wang 已提交
279 280
    The buffered data reader will read and save data entries into a
    buffer. Reading from the buffered data reader will proceed as long
281
    as the buffer is not empty.
282

283
    :param reader: the data reader to read from.
Y
Yu Yang 已提交
284
    :type reader: callable
285
    :param size: max buffer size.
Y
Yu Yang 已提交
286
    :type size: int
287

288
    :returns: the buffered data reader.
289 290 291 292 293 294 295 296 297 298 299 300
    """

    class EndSignal():
        pass

    end = EndSignal()

    def read_worker(r, q):
        for d in r:
            q.put(d)
        q.put(end)

H
Helin Wang 已提交
301 302
    def data_reader():
        r = reader()
303
        q = Queue(maxsize=size)
304 305 306 307 308 309 310 311 312 313 314
        t = Thread(
            target=read_worker, args=(
                r,
                q, ))
        t.daemon = True
        t.start()
        e = q.get()
        while e != end:
            yield e
            e = q.get()

H
Helin Wang 已提交
315
    return data_reader
Y
Yu Yang 已提交
316 317


Y
Yu Yang 已提交
318
def firstn(reader, n):
Y
Yu Yang 已提交
319
    """
320 321 322 323 324
    paddle.fluid.io.firstn ( :ref:`api_fluid_io_firstn` ) is recommended to use,
    and paddle.reader.firstn is an alias.
    
    This API creates a decorated reader, and limits the max number of 
    samples that reader could return.
Y
Yu Yang 已提交
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    Args:
        reader(callable): the input reader.
        n(int): the max number of samples in the reader.

    Returns:
        callable: the decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(100):
                    yield i
            firstn_reader = fluid.io.firstn(reader, 5)
            for e in firstn_reader():
                print(e)
            # the outputs are: 0 1 2 3 4  
Y
Yu Yang 已提交
345 346
    """

Y
Yu Yang 已提交
347 348 349 350
    # TODO(yuyang18): Check if just drop the reader, could clean the opened
    # resource or not?

    def firstn_reader():
Y
Yu Yang 已提交
351
        for i, item in enumerate(reader()):
Y
Yu Yang 已提交
352
            if i == n:
Y
Yu Yang 已提交
353 354 355
                break
            yield item

Y
Yu Yang 已提交
356
    return firstn_reader
357 358 359 360 361 362


class XmapEndSignal():
    pass


363
def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
364
    """
Z
Zeng Jinle 已提交
365 366 367 368 369 370 371 372 373 374 375 376
    Use multi-threads to map samples from reader by a mapper defined by user.

    Args:
        mapper (callable): a function to map the data from reader.
        reader (callable): a data reader which yields the data. 
        process_num (int): thread number to handle original sample.
        buffer_size (int): size of the queue to read data in. 
        order (bool): whether to keep the data order from original reader. 
            Default False.

    Returns:
        callable: a decorated reader with data mapping. 
377 378
    """
    end = XmapEndSignal()
W
wanghaoshuang 已提交
379

380 381 382 383 384
    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)
W
wanghaoshuang 已提交
385

386 387 388 389
    # define a worker to read samples from reader to in_queue with order flag
    def order_read_worker(reader, in_queue):
        in_order = 0
        for i in reader():
W
wanghaoshuang 已提交
390 391
            in_queue.put((in_order, i))
            in_order += 1
392
        in_queue.put(end)
393 394 395 396 397 398 399 400 401 402 403

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, XmapEndSignal):
            r = mapper(sample)
            out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
W
wanghaoshuang 已提交
404

405 406 407 408 409 410 411 412 413 414
    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue by order
    def order_handle_worker(in_queue, out_queue, mapper, out_order):
        ins = in_queue.get()
        while not isinstance(ins, XmapEndSignal):
            order, sample = ins
            r = mapper(sample)
            while order != out_order[0]:
                pass
            out_queue.put(r)
W
wanghaoshuang 已提交
415
            out_order[0] += 1
416 417 418
            ins = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
419 420

    def xreader():
421 422
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
423 424 425 426 427 428 429 430 431 432 433
        out_order = [0]
        # start a read worker in a thread
        target = order_read_worker if order else read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = order_handle_worker if order else handle_worker
        args = (in_queue, out_queue, mapper, out_order) if order else (
            in_queue, out_queue, mapper)
        workers = []
434
        for i in range(process_num):
435 436 437 438 439 440
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

441 442 443 444 445 446 447 448 449 450 451 452 453
        sample = out_queue.get()
        while not isinstance(sample, XmapEndSignal):
            yield sample
            sample = out_queue.get()
        finish = 1
        while finish < process_num:
            sample = out_queue.get()
            if isinstance(sample, XmapEndSignal):
                finish += 1
            else:
                yield sample

    return xreader
454 455


Q
Qiao Longfei 已提交
456 457
def multiprocess_reader(readers, use_pipe=True, queue_size=1000):
    """
458 459 460 461 462 463 464 465 466
    This API use python ``multiprocessing`` to read data from ``readers`` parallelly,
    and then ``multiprocess.Queue`` or ``multiprocess.Pipe`` is used to merge 
    these data. A seperate process will be created for each reader in the 
    ``readers`` list, please guarantee every reader can work independently 
    to avoid conflicts in parallel environment.
    

    ``Multiprocess.Queue`` require the rw access right to /dev/shm, and it's not suppported 
    in some platforms.
Q
Qiao Longfei 已提交
467

468 469 470 471 472 473 474 475
    Parameters:
       readers (list( ``generator`` ) | tuple( ``generator`` )): a python ``generator`` list 
           used to read input data
       use_pipe (bool, optional): control the inner API used to implement the multi-processing,
           default True - use ``multiprocess.Pipe`` which is recommended
       queue_size (int, optional): only useful when ``use_pipe`` is False - ``multiprocess.Queue``
           is used, default 1000. Increase this value can speed up the data reading, and more memory
           will be consumed.
Q
Qiao Longfei 已提交
476

477 478
    Returns:
        ``generator``: a new reader which can be run parallelly
Q
Qiao Longfei 已提交
479

480 481

    Example:
Q
Qiao Longfei 已提交
482 483 484

    .. code-block:: python

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        import paddle.fluid as fluid
        from paddle.fluid.io import multiprocess_reader
        import numpy as np
        
        sample_files = ['sample_file_1', 'sample_file_2']
        
        def fake_input_files():
            with open(sample_files[0], 'w') as f:
               np.savez(f, a=np.array([1, 2]), b=np.array([3, 4]), c=np.array([5, 6]), d=np.array([7, 8]))
            with open(sample_files[1], 'w') as f:
               np.savez(f, a=np.array([9, 10]), b=np.array([11, 12]), c=np.array([13, 14]))
        
        
        def generate_reader(file_name):
            # load data file
            def _impl():
                data = np.load(file_name)
                for item in sorted(data.files):
                    yield data[item],
            return _impl
        
        if __name__ == '__main__':
            # generate sample input files
            fake_input_files()
            
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                place = fluid.CPUPlace()
                # the 1st 2 is batch size
                image = fluid.data(name='image', dtype='int64', shape=[2, 1, 2]) 
                fluid.layers.Print(image)
                # print detailed tensor info of image variable
            
                reader = fluid.io.PyReader(feed_list=[image], capacity=2)
            
                decorated_reader = multiprocess_reader(
                    [generate_reader(sample_files[0]), generate_reader(sample_files[1])], False)
            
                reader.decorate_sample_generator(decorated_reader, batch_size=2, places=[place])
            
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
            
                for data in reader():
                    res = exe.run(feed=data, fetch_list=[image])
                    print(res[0])
                    # print below content in this case
                    # [[[1 2]], [[3 4]]]
                    # [[[5 6]], [[7 8]]]
                    # [[[9 10]], [[11 12]]]
                    # [13,14] will be dropped

Q
Qiao Longfei 已提交
536 537 538 539 540 541 542 543 544 545 546
    """

    try:
        import ujson as json
    except Exception as e:
        sys.stderr.write("import ujson error: " + str(e) + " use json\n")
        import json

    assert type(readers) is list and len(readers) > 0

    def _read_into_queue(reader, queue):
547 548 549 550 551 552 553 554 555
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None")
                queue.put(sample)
            queue.put(None)
        except:
            queue.put("")
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569

    def queue_reader():
        queue = multiprocessing.Queue(queue_size)
        for reader in readers:
            p = multiprocessing.Process(
                target=_read_into_queue, args=(reader, queue))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
            sample = queue.get()
            if sample is None:
                finish_num += 1
570 571
            elif sample == "":
                raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
572 573 574 575
            else:
                yield sample

    def _read_into_pipe(reader, conn):
576 577 578 579 580 581 582 583 584 585 586
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None!")
                conn.send(json.dumps(sample))
            conn.send(json.dumps(None))
            conn.close()
        except:
            conn.send(json.dumps(""))
            conn.close()
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609

    def pipe_reader():
        conns = []
        for reader in readers:
            parent_conn, child_conn = multiprocessing.Pipe()
            conns.append(parent_conn)
            p = multiprocessing.Process(
                target=_read_into_pipe, args=(reader, child_conn))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        conn_to_remove = []
        while finish_num < reader_num:
            for conn in conn_to_remove:
                conns.remove(conn)
            conn_to_remove = []
            for conn in conns:
                sample = json.loads(conn.recv())
                if sample is None:
                    finish_num += 1
                    conn.close()
                    conn_to_remove.append(conn)
610 611 612 613
                elif sample == "":
                    conn.close()
                    conn_to_remove.append(conn)
                    raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
614 615 616 617 618 619 620
                else:
                    yield sample

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader