fc_compute.cc 7.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/fc_compute.h"
16
#include <vector>
X
xingzhaolong 已提交
17
#include "paddle/fluid/lite/api/paddle_place.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/lite/arm/math/funcs.h"
X
xingzhaolong 已提交
19 20
#include "paddle/fluid/lite/arm/math/gemm_prepacked_int8.h"
#include "paddle/fluid/lite/arm/math/gemv_arm_int8.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"
X
xingzhaolong 已提交
23

T
tensor-tang 已提交
24 25 26 27 28
namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

T
tensor-tang 已提交
29
void FcCompute::PrepareForRun() {
T
tensor-tang 已提交
30 31 32 33
  auto& param = this->Param<operators::FcParam>();
  auto x_dims = param.input->dims();
  auto w_dims = param.w->dims();

T
tensor-tang 已提交
34 35
  auto& ctx = this->ctx_->template As<ARMContext>();

T
tensor-tang 已提交
36 37 38 39
  CHECK_GE(x_dims.size(), 2UL);
  CHECK_EQ(w_dims.size(), 2UL);
  CHECK_EQ(param.output->dims().size(), 2UL);

T
tensor-tang 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  m_ = x_dims.Slice(0, param.in_num_col_dims).production();
  k_ = x_dims.Slice(param.in_num_col_dims, x_dims.size()).production();
  n_ = w_dims[1];
  CHECK_EQ(k_, static_cast<int>(w_dims[0]));

  if (m_ == 1) {
    if (!transed_weight_) {
      transed_weight_ = new Tensor;
    }
    transed_weight_->Resize({n_, k_});
    const auto* w_data = param.w->data<float>();
    auto* t_data = transed_weight_->mutable_data<float>();
    int i = 0;

    for (int nn = 0; nn < n_; ++nn) {
      for (int kk = 0; kk < k_; ++kk) {
        t_data[i++] = w_data[kk * n_ + nn];
      }
    }
  }
60 61 62 63 64 65

  if (m_ > 1) {
    int hblock = lite::arm::math::get_hblock(ctx.arch());
    int m_round = hblock * ((m_ + hblock - 1) / hblock);
    ctx.ExtendWorkspace(DDimLite(std::vector<int64_t>({m_round * k_})));
  }
T
tensor-tang 已提交
66 67 68 69 70
}

void FcCompute::Run() {
  auto& param = this->Param<operators::FcParam>();

T
tensor-tang 已提交
71 72 73 74 75 76
  const auto* i_data = param.input->data<float>();
  const auto* w_data = param.w->data<float>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  auto* o_data = param.output->mutable_data<float>();

  auto& ctx = this->ctx_->template As<ARMContext>();
T
tensor-tang 已提交
77
  if (m_ > 1) {
X
xingzhaolong 已提交
78 79
    float* packed_in =
        ctx.workspace_data<float>() + ctx.l2_cache_size() / sizeof(float);
T
tensor-tang 已提交
80 81 82
    lite::arm::math::prepackA(packed_in, i_data, k_, 0, m_, 0, k_, false, &ctx);
    lite::arm::math::sgemm_prepack(packed_in, w_data, b_data, o_data, m_, n_,
                                   k_, false, false, false, &ctx);
T
tensor-tang 已提交
83
    if (param.bias) {
T
tensor-tang 已提交
84 85
      CHECK_EQ(param.bias->numel(), n_);
      lite::arm::math::fill_bias_fc(o_data, b_data, m_, n_);
T
tensor-tang 已提交
86 87
    }
  } else {
T
tensor-tang 已提交
88 89 90 91
    CHECK(transed_weight_);
    const auto* t_data = transed_weight_->data<float>();

    lite::arm::math::sgemv(t_data, i_data, o_data, false, n_, k_,
T
tensor-tang 已提交
92
                           b_data != nullptr, b_data, false);
T
tensor-tang 已提交
93 94 95
  }
}

X
xingzhaolong 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
template <PrecisionType Ptype_out>
void FcComputeInt8<Ptype_out>::PrepareForRun() {
  auto& param = this->Param<operators::FcParam>();
  auto x_dims = param.input->dims();
  auto w_dims = param.w->dims();

  auto& ctx = this->ctx_->template As<ARMContext>();
  if (!tmp_int32_out_) {
    tmp_int32_out_ = new Tensor;
    tmp_int32_out_->Resize(param.output->dims());
  }

  CHECK_GE(x_dims.size(), 2UL);
  CHECK_EQ(w_dims.size(), 2UL);
  CHECK_EQ(param.output->dims().size(), 2UL);

  this->m_ = x_dims.Slice(0, param.in_num_col_dims).production();
  this->k_ = x_dims.Slice(param.in_num_col_dims, x_dims.size()).production();
  this->n_ = w_dims[1];
  CHECK_EQ(k_, static_cast<int>(w_dims[0]));

  if (this->m_ == 1) {
    if (!this->transed_weight_) {
      this->transed_weight_ = new Tensor;
    }
    this->transed_weight_->Resize({this->n_, this->k_});
    const auto* w_data = param.w->template data<int8_t>();
    auto* t_data = this->transed_weight_->template mutable_data<int8_t>();
    int i = 0;

    for (int nn = 0; nn < this->n_; ++nn) {
      for (int kk = 0; kk < this->k_; ++kk) {
        t_data[i++] = w_data[kk * this->n_ + nn];
      }
    }
  }

  if (this->m_ > 1) {
    int hblock = lite::arm::math::get_hblock(ctx.arch());
    int m_round = hblock * ((this->m_ + hblock - 1) / hblock);
    ctx.ExtendWorkspace(DDimLite(std::vector<int64_t>({m_round * this->k_})));
  }
}

template <PrecisionType Ptype_out>
void FcComputeInt8<Ptype_out>::Run() {
  auto& param = this->Param<operators::FcParam>();

  const auto* i_data = param.input->template data<int8_t>();
  const auto* w_data = param.w->template data<int8_t>();
  const auto* b_data = param.bias ? param.bias->template data<int>() : nullptr;
  int* o_data = nullptr;

  auto& ctx = this->ctx_->template As<ARMContext>();

  o_data = this->tmp_int32_out_->template mutable_data<int>();
  if (m_ > 1) {
    int8_t* packed_in =
        static_cast<int8_t*>(ctx.template workspace_data<int8_t>()) +
        ctx.l2_cache_size() / sizeof(int8_t);
    lite::arm::math::prepackA_int8(packed_in, i_data, k_, 0, m_, 0, k_, false);
    lite::arm::math::gemm_prepack_int8(packed_in, w_data, b_data, o_data, m_,
                                       n_, k_, false, false, false, nullptr,
                                       &ctx);
    if (param.bias) {
      CHECK_EQ(param.bias->numel(), n_);
      lite::arm::math::fill_bias_fc(o_data, b_data, m_, n_);
    }
  } else {
    CHECK(transed_weight_);
    const auto* t_data = transed_weight_->template data<int8_t>();
    lite::arm::math::gemv_int8(t_data, i_data, o_data, false, n_, k_, nullptr,
                               b_data != nullptr, b_data, false);
  }

  float i_scale = param.input_scale;
  std::vector<float> weight_scale = param.weight_scale;
  if (Ptype_out == PRECISION(kInt8)) {
    float o_scale = param.output_scale;
    param.output->template mutable_data<int8_t>();
    lite::arm::math::trans_tensor_dtype<PRECISION(kInt32), PRECISION(kInt8)>(
        tmp_int32_out_, param.output, i_scale, o_scale, weight_scale);
  } else if (Ptype_out == PRECISION(kFloat)) {
    param.output->template mutable_data<float>();
    lite::arm::math::trans_tensor_dtype<PRECISION(kInt32), PRECISION(kFloat)>(
        tmp_int32_out_, param.output, i_scale, 1.f, weight_scale);
  } else {
    LOG(ERROR) << "unsupported precision type!!";
  }
}

T
tensor-tang 已提交
187 188 189 190 191 192 193 194 195 196 197 198
}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(fc, kARM, kFloat, kNCHW,
                     paddle::lite::kernels::arm::FcCompute, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("W", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
X
xingzhaolong 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

REGISTER_LITE_KERNEL(
    fc, kARM, kInt8, kNCHW,
    paddle::lite::kernels::arm::FcComputeInt8<PRECISION(kInt8)>, int8out)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .BindInput("W", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fc, kARM, kInt8, kNCHW,
    paddle::lite::kernels::arm::FcComputeInt8<PRECISION(kFloat)>, fp32out)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .BindInput("W", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt8))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kFloat))})
    .Finalize();