io.py 42.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
17
import multiprocessing
P
peizhilin 已提交
18
import os
M
minqiyang 已提交
19
import six
Y
yuyang18 已提交
20
import threading
D
dzhwinter 已提交
21

Y
yuyang18 已提交
22
from ..data_feeder import DataFeeder
23 24
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
25
from .. import core
Y
Refine  
Yu Yang 已提交
26
from ..executor import global_scope
Y
yuyang18 已提交
27
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
28
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
29 30
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
Y
Yu Yang 已提交
31

Y
Yu Yang 已提交
32
__all__ = [
Y
yuyang 已提交
33
    'data', 'open_files', 'read_file', 'shuffle', 'batch', 'double_buffer',
Q
Qiao Longfei 已提交
34 35
    'random_data_generator', 'py_reader', 'create_py_reader_by_data',
    'Preprocessor', 'load'
Y
Yu Yang 已提交
36
]
Y
Yu Yang 已提交
37 38 39 40 41 42 43 44 45 46


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
47
    **Data Layer**
Y
Yu Yang 已提交
48

K
kavyasrinet 已提交
49
    This function takes in the input and based on whether data has
C
caoying03 已提交
50
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
51
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
52
    following operators in the graph.
Y
Yu Yang 已提交
53 54 55 56

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
57 58
    Args:
       name(str): The name/alias of the function
S
sneaxiy 已提交
59 60 61 62
       shape(list): Tuple declaring the shape. If :code:`append_batch_size` is 
                    True and there is no -1 inside :code:`shape`, it should be 
                    considered as the shape of the each sample. Otherwise, it
                    should be considered as the shape of the batched data.  
X
Xin Pan 已提交
63 64 65 66 67
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
            For example if shape=[1], the resulting shape is [-1, 1].
          2. If shape contains -1, such as shape=[1, -1],
            append_batch_size will be enforced to be be False (ineffective).
68
       dtype(basestring): The type of data : float32, float_16, int etc
K
kavyasrinet 已提交
69 70 71 72 73 74 75 76 77 78 79
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
80 81 82
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
M
minqiyang 已提交
83
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
84 85 86 87 88 89 90 91 92
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
93
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
94 95 96 97 98
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
99 100
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
101
    return data_var
T
typhoonzero 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
127
    **ListenAndServ Layer**
T
typhoonzero 已提交
128

Y
yi.wu 已提交
129 130 131 132 133 134 135 136 137
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
138

Y
yi.wu 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    Examples:
        .. code-block:: python

            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
154 155
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
156 157
    """

Y
Yancey1989 已提交
158
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
159
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
160
        self.inputs = inputs
T
typhoonzero 已提交
161 162 163
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
164 165
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
166
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
180 181 182 183 184 185 186 187
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
188 189
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
190 191 192

        return params, grads

T
typhoonzero 已提交
193 194 195 196 197 198 199
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
200 201 202 203 204 205
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
206
            type='listen_and_serv',
Y
Yancey1989 已提交
207
            inputs={"X": self.inputs},
T
typhoonzero 已提交
208 209 210 211
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
212 213 214
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
215
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
216
                'grad_to_block_id': [""]
T
typhoonzero 已提交
217 218 219
            })


220
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
221
    """
Y
yi.wu 已提交
222 223
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
224 225

    Args:
Y
yi.wu 已提交
226
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
227
                   of send_vars to send
Y
yi.wu 已提交
228 229
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
230 231 232 233

    """
    assert (type(send_vars) == list)

234 235 236 237 238 239 240
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
241
    epmap = endpoints.split(",")
T
typhoonzero 已提交
242
    endpoints = list(set(epmap))
T
typhoonzero 已提交
243 244

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
245
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
246

T
typhoonzero 已提交
247 248 249
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
250
        outputs={"Out": dummy_output},
Y
Yancey1989 已提交
251 252 253 254 255
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
256
    if sync:
W
Wu Yi 已提交
257 258 259 260 261
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints})
262 263


264
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
265
    """
Y
yi.wu 已提交
266
    Receive variables from server side
267 268

    Args:
Y
yi.wu 已提交
269
        endpoints (str): comma seperated IP:PORT pairs in the order
270
                   of send_vars to send
Y
yi.wu 已提交
271 272
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
273

Y
yi.wu 已提交
274 275
    Returns:
        list: list of received variables
276 277 278
    """
    assert (type(get_vars) == list)

279 280 281 282 283 284 285
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

286 287 288 289 290 291
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
292
        inputs={"X": dummy_input},
293 294 295
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
296
    if sync:
W
Wu Yi 已提交
297 298 299 300
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints})
Y
yi.wu 已提交
301
    return get_vars
Y
Yu Yang 已提交
302 303


Y
Refine  
Yu Yang 已提交
304 305 306 307 308 309 310 311 312 313
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
314 315
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
316 317 318
    return reader


Y
Yu Yang 已提交
319 320 321 322
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
323
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
324
    new_var.persistable = True
F
fengjiayi 已提交
325 326 327 328
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
345
    new_op = block.append_op(
F
fengjiayi 已提交
346 347 348
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
349
        attrs=op.all_attrs())
F
fengjiayi 已提交
350
    return new_op
Y
Yu Yang 已提交
351 352


W
wopeizl 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
@templatedoc(op_type='create_recordio_file_reader')
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
                       for_parallel=True):
    """
    ${comment}

    Args:
       filename(${filename_type}): ${filename_comment}.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(${lod_levels_type}): ${lod_levels_comment}.
       dtypes(list): List of strs which declaring data type.
       pass_num(int): Number of passes to run.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       ${out_comment}.

    Examples:

        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.io.open_recordio_file(
        >>>                               filename='./data.recordio',
        >>>                               shapes=[(3,224,224), (1)],
        >>>                               lod_levels=[0, 0],
        >>>                               dtypes=['float32', 'int64'])
        >>> # Via the reader, we can use 'read_file' layer to get data:
        >>> image, label = fluid.layers.io.read_file(reader)
    """
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })
Y
Yu Yang 已提交
407

W
wopeizl 已提交
408 409 410 411
    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
412

W
wopeizl 已提交
413 414
    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)
F
fengjiayi 已提交
415

W
wopeizl 已提交
416
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
417 418


F
fengjiayi 已提交
419 420 421 422 423
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
424 425 426
    Instead of opening a file and reading data from it, this
    Reader Variable generates float uniform random data by itself.
    It can be used as a dummy reader to test a network without
F
fengjiayi 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:

442
        .. code-block:: python
F
fengjiayi 已提交
443

444 445 446 447 448 449 450
            reader = fluid.layers.random_data_generator(
                                             low=0.0,
                                             high=1.0,
                                             shapes=[[3,224,224], [1]],
                                             lod_levels=[0, 0])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    return monkey_patch_reader_methods(main_prog_var)


Q
Qiao Longfei 已提交
483 484 485 486 487 488
def _py_reader(capacity,
               shapes,
               dtypes,
               lod_levels=None,
               name=None,
               use_double_buffer=True,
S
sneaxiy 已提交
489 490
               feed_list=None,
               lock_free=False):
491

Q
Qiao Longfei 已提交
492 493 494 495 496 497 498 499 500 501
    if feed_list is not None:
        if not isinstance(feed_list, list):
            raise TypeError("feed_list should be a list of Variable"
                            " instead of " + str(type(feed_list)))
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []

Q
Qiao Longfei 已提交
502 503 504 505 506 507
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
Q
Qiao Longfei 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)

    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
S
sneaxiy 已提交
530 531 532 533 534
    if not lock_free:
        feed_queue = core.init_lod_tensor_blocking_queue(var, capacity)
    else:
        feed_queue = core.init_lock_free_lod_tensor_blocking_queue(var,
                                                                   capacity)
Q
Qiao Longfei 已提交
535 536 537 538

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
    startup_blk.append_op(
S
sneaxiy 已提交
539 540
        type='create_py_reader'
        if not lock_free else 'create_lock_free_py_reader',
Q
Qiao Longfei 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
        def __provider_thread__():
            for tensors in func():
                array = core.LoDTensorArray()
                for item in tensors:
                    if not isinstance(item, core.LoDTensor):
                        tmp = core.LoDTensor()
577
                        tmp.set(item, core.CPUPlace())
Q
Qiao Longfei 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
                        item = tmp

                    array.append(item)

                if reader.exited:
                    break
                feed_queue.push(array)
                if reader.exited:
                    break
            feed_queue.close()

        reader.thread = threading.Thread(target=__provider_thread__)
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level))
                    counter += 1

Q
Qiao Longfei 已提交
612
            data_names = [feed_data.name for feed_data in actual_feed_list]
Q
Qiao Longfei 已提交
613 614 615 616 617 618 619
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
620
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
    reader.start = __start__

    return reader


Y
yuyang18 已提交
642 643 644 645 646
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
S
sneaxiy 已提交
647 648
              use_double_buffer=True,
              lock_free=False):
S
sneaxiy 已提交
649
    """
650
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
651

652
    This layer returns a Reader Variable.
653 654
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
655 656 657 658 659 660 661 662
    source in Python side. When :code:`Executor::Run()` is invoked in C++
    side, the data from the generator would be read automatically. Unlike
    :code:`DataFeeder.feed()`, the data reading process and
    :code:`Executor::Run()` process can run in parallel using
    :code:`py_reader`. The :code:`start()` method of the Reader should be
    called when each pass begins, while the :code:`reset()` method should be
    called when the pass ends and :code:`fluid.core.EOFException` raises.
    Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
S
sneaxiy 已提交
663 664

    Args:
665
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
Y
yuyang18 已提交
666 667 668 669 670
       shapes(list|tuple): List of tuples which declaring data shapes.
       dtypes(list|tuple): List of strs which declaring data type.
       lod_levels(list|tuple): List of ints which declaring data lod_level.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
671
       use_double_buffer(bool): Whether use double buffer or not.
S
sneaxiy 已提交
672 673

    Returns:
674
       Variable: A Reader from which we can get feeding data.
S
sneaxiy 已提交
675 676 677

    Examples:

678
        1. The basic usage of :code:`py_reader` is as follows:
S
sneaxiy 已提交
679

680 681 682 683 684 685 686
        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> reader = fluid.layers.py_reader(capacity=64,
        >>>                                 shapes=[(-1,3,224,224), (-1,1)],
        >>>                                 dtypes=['float32', 'int64'])
        >>> reader.decorate_paddle_reader(
X
Xin Pan 已提交
687
        >>>     paddle.reader.shuffle(paddle.batch(mnist.train())
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
        >>>
        >>> img, label = fluid.layers.read_file(reader)
        >>> loss = network(img, label) # some network definition
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
        >>>
        >>> exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
        >>> for epoch_id in range(10):
        >>>     reader.start()
        >>>     try:
        >>>         while True:
        >>>             exe.run(fetch_list=[loss.name])
        >>>     except fluid.core.EOFException:
        >>>         reader.reset()

        2. When training and testing are both performed, two different
        :code:`py_reader` should be created with different names, e.g.:

        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> def network(reader):
        >>>     img, label = fluid.layers.read_file(reader)
        >>>     # Here, we omitted the network definition
        >>>     return loss
        >>>
        >>> train_reader = fluid.layers.py_reader(capacity=64,
        >>>                                       shapes=[(-1,3,224,224), (-1,1)],
        >>>                                       dtypes=['float32', 'int64'],
        >>>                                       name='train_reader')
        >>> train_reader.decorate_paddle_reader(
X
Xin Pan 已提交
719
        >>>     paddle.reader.shuffle(paddle.batch(mnist.train())
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
        >>>
        >>> test_reader = fluid.layers.py_reader(capacity=32,
        >>>                                      shapes=[(-1,3,224,224), (-1,1)],
        >>>                                      dtypes=['float32', 'int64'],
        >>>                                      name='test_reader')
        >>> test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
        >>>
        >>> # Create train_main_prog and train_startup_prog
        >>> train_main_prog = fluid.Program()
        >>> train_startup_prog = fluid.Program()
        >>> with fluid.program_guard(train_main_prog, train_startup_prog):
        >>>     # Use fluid.unique_name.guard() to share parameters with test program
        >>>     with fluid.unique_name.guard():
        >>>         train_loss = network(train_reader) # some network definition
        >>>         adam = fluid.optimizer.Adam(learning_rate=0.01)
        >>>         adam.minimize(loss)
        >>>
        >>> # Create test_main_prog and test_startup_prog
        >>> test_main_prog = fluid.Program()
        >>> test_startup_prog = fluid.Program()
        >>> with fluid.program_guard(test_main_prog, test_startup_prog):
        >>>     # Use fluid.unique_name.guard() to share parameters with train program
        >>>     with fluid.unique_name.guard():
        >>>         test_loss = network(test_reader)
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)
        >>>
        >>> train_exe = fluid.ParallelExecutor(use_cuda=True,
        >>>                 loss_name=train_loss.name, main_program=train_main_prog)
        >>> test_exe = fluid.ParallelExecutor(use_cuda=True,
        >>>                 loss_name=test_loss.name, main_program=test_main_prog)
        >>> for epoch_id in range(10):
753
        >>>     train_reader.start()
754 755 756 757 758 759
        >>>     try:
        >>>         while True:
        >>>             train_exe.run(fetch_list=[train_loss.name])
        >>>     except fluid.core.EOFException:
        >>>         train_reader.reset()
        >>>
760
        >>>     test_reader.start()
761 762 763 764 765
        >>>     try:
        >>>         while True:
        >>>             test_exe.run(fetch_list=[test_loss.name])
        >>>     except fluid.core.EOFException:
        >>>         test_reader.reset()
S
sneaxiy 已提交
766
    """
Q
Qiao Longfei 已提交
767 768 769 770 771 772
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
S
sneaxiy 已提交
773 774
        use_double_buffer=use_double_buffer,
        lock_free=lock_free)
Q
Qiao Longfei 已提交
775 776


Q
Qiao Longfei 已提交
777 778 779 780 781 782
def create_py_reader_by_data(capacity,
                             feed_list,
                             name=None,
                             use_double_buffer=True):
    """
    Create a Python reader for data feeding in Python
Q
Qiao Longfei 已提交
783

Q
Qiao Longfei 已提交
784
    This layer returns a Reader Variable.
Q
Qiao Longfei 已提交
785

Q
Qiao Longfei 已提交
786 787
    Works much like py_reader except that it's input is feed_list
    instead of shapes, dtypes and lod_levels
Q
Qiao Longfei 已提交
788

Q
Qiao Longfei 已提交
789 790 791 792 793 794
    Args:
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
       feed_list(list(Variable)): The data feed list.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
       use_double_buffer(bool): Whether use double buffer or not.
Q
Qiao Longfei 已提交
795

Q
Qiao Longfei 已提交
796 797
    Returns:
       Variable: A Reader from which we can get feeding data.
Q
Qiao Longfei 已提交
798

Q
Qiao Longfei 已提交
799
    Examples:
Q
Qiao Longfei 已提交
800

Q
Qiao Longfei 已提交
801
        1. The basic usage of :code:`py_reader` is as follows:
Q
Qiao Longfei 已提交
802

Q
Qiao Longfei 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> image = fluid.layers.data(name='image', shape=[3,224,224], dtypes='float32')
        >>> label = fluid.layers.data(name='label', shape=[1], dtypes='int64')
        >>> reader = fluid.layers.create_py_reader_by_data(capacity=64, feed_list=[image, label])
        >>> reader.decorate_paddle_reader(
        >>>     paddle.reader.shuffle(paddle.batch(mnist.train())
        >>>
        >>> img, label = fluid.layers.read_file(reader)
        >>> loss = network(img, label) # some network definition
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
        >>>
        >>> exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
        >>> for epoch_id in range(10):
        >>>     reader.start()
        >>>     try:
        >>>         while True:
        >>>             exe.run(fetch_list=[loss.name])
        >>>     except fluid.core.EOFException:
        >>>         reader.reset()
    """
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list)
S
sneaxiy 已提交
834 835


836 837 838 839
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yuyang18 已提交
840
               thread_num=None,
F
fengjiayi 已提交
841 842
               buffer_size=None,
               pass_num=1,
Y
yuyang18 已提交
843
               is_test=None):
F
fengjiayi 已提交
844 845 846
    """
    Open files

847 848 849
    This layer takes a list of files to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from given files. All files must
    have name suffixs to indicate their formats, e.g., '*.recordio'.
F
fengjiayi 已提交
850 851 852 853 854 855

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
Y
yuyang18 已提交
856 857 858
       thread_num(None): The number of thread to read files.
            Default: min(len(filenames), cpu_number).
       buffer_size(None): The buffer size of reader. Default: 3 * thread_num
F
fengjiayi 已提交
859
       pass_num(int): Number of passes to run.
Y
yuyang18 已提交
860 861 862 863
       is_test(bool|None): Whether `open_files` used for testing or not. If it
            is used for testing, the order of data generated is same as the file
            order. Otherwise, it is not guaranteed the order of data is same
            between every epoch. [Default: False].
F
fengjiayi 已提交
864 865 866 867 868 869 870

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
871
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
872
                                                     './data2.recordio'],
F
fengjiayi 已提交
873 874
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
Y
yuyang18 已提交
875
                                             dtypes=['float32', 'int64'])
F
fengjiayi 已提交
876 877

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
878
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
879
    """
Y
yuyang18 已提交
880 881 882 883 884 885 886 887 888
    if thread_num is None:
        thread_num = min(len(filenames), multiprocessing.cpu_count())
    else:
        thread_num = int(thread_num)

    if buffer_size is None:
        buffer_size = 3 * thread_num
    else:
        buffer_size = int(buffer_size)
Y
yuyang18 已提交
889

M
minqiyang 已提交
890
    if isinstance(filenames, six.string_types):
F
fengjiayi 已提交
891
        filenames = [filenames]
F
fengjiayi 已提交
892 893 894 895 896 897 898 899
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
900
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
901
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
902
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
Y
yuyang18 已提交
903 904 905 906
    attrs = {
        'shape_concat': shape_concat,
        'lod_levels': lod_levels,
        'ranks': ranks,
Y
yuyang18 已提交
907 908 909
        'file_names': filenames,
        'thread_num': thread_num,
        'buffer_size': buffer_size
Y
yuyang18 已提交
910 911 912
    }
    if is_test is not None:
        attrs['is_test'] = is_test
F
fengjiayi 已提交
913
    startup_blk.append_op(
Y
yuyang18 已提交
914
        type='open_files', outputs={'Out': [startup_reader]}, attrs=attrs)
F
fengjiayi 已提交
915

F
fengjiayi 已提交
916 917 918 919 920 921 922
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
923

F
fengjiayi 已提交
924 925 926
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
927
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
928 929 930
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
931
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
932 933 934 935 936
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
937 938 939 940
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
941 942


943 944
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
945 946 947 948 949 950 951 952 953 954
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
955
def shuffle(reader, buffer_size):
956
    """
T
Tink_Y 已提交
957 958 959 960 961 962
    Creates a data reader whose data output is shuffled.
    Output from the iterator that created by original reader will be
    buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
    is determined by argument buf_size.

    Args:
H
haowang101779990 已提交
963 964 965 966 967
        reader(callable): the original reader whose output will be shuffled.
        buf_size(int): shuffle buffer size.

    Returns:
        callable: the new reader whose output is shuffled.
968
    """
969 970
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
971 972


J
JiayiFeng 已提交
973
def batch(reader, batch_size):
F
fengjiayi 已提交
974
    """
975 976 977
    This layer is a reader decorator. It takes a reader and adds
    'batching' decoration on it. When reading with the result
    decorated reader, output data will be automatically organized
F
fengjiayi 已提交
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
    to the form of batches.

    Args:
        reader(Variable): The reader to be decorated with 'batching'.
        batch_size(int): The batch size.

    Returns:
        Variable: The reader which has been decorated with 'batching'.

    Examples:
        .. code-block:: python

            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
                                                    shapes=[(3,224,224), (1)],
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)

            # If we read data with the raw_reader:
            #     data = fluid.layers.read_file(raw_reader)
            # We can only get data instance by instance.
1002
            #
F
fengjiayi 已提交
1003 1004
            # However, if we read data with the batch_reader:
            #     data = fluid.layers.read_file(batch_reader)
1005 1006
            # Each 5 adjacent instances will be automatically combined together
            # to become a batch. So what we get('data') is a batch data instead
F
fengjiayi 已提交
1007 1008
            # of an instance.
    """
J
JiayiFeng 已提交
1009 1010 1011 1012
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


1013
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    """
    Wrap a double buffer reader. The data will copy to target place with a
    double buffer queue. If the target place is None, the place that executor
    perform on will be used.

    Args:
        reader(Variable): the reader variable need to be wrapped.
        place(Place): the place of target data. Default is the sample place of
            executor perform.

        name(str): Variable name. None if the user does not care.

    Returns:
        wrapped reader with double buffer.

    Examples:

        >>> reader = fluid.layers.open_files(filenames=['somefile'],
        >>>                                  shapes=[[-1, 784], [-1, 1]],
        >>>                                  dtypes=['float32', 'int64'])
        >>> reader = fluid.layers.double_buffer(reader)
        >>> img, label = fluid.layers.read_file(reader)
    """
Y
Yu Yang 已提交
1037 1038 1039
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
1040 1041
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
1042 1043


F
fengjiayi 已提交
1044
def multi_pass(reader, pass_num):
1045 1046
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
1047 1048


F
fengjiayi 已提交
1049
def read_file(reader):
F
fengjiayi 已提交
1050
    """
F
fengjiayi 已提交
1051
    Execute the given reader and get data via it.
F
fengjiayi 已提交
1052

1053 1054
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
F
fengjiayi 已提交
1055 1056 1057 1058
    `fluid.layers.double_buffer()` and so on.

    Args:

F
fengjiayi 已提交
1059
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
1060 1061

    Returns:
F
fengjiayi 已提交
1062
        Tuple[Variable]: Data read via the given reader.
F
fengjiayi 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

    Examples:
        .. code-block:: python

           data_file = fluid.layers.open_files(
                filenames=['mnist.recordio'],
                shapes=[(-1, 748), (-1, 1)],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"])
            data_file = fluid.layers.double_buffer(
                fluid.layers.batch(data_file, batch_size=64))
            input, label = fluid.layers.read_file(data_file)
    """
Y
Yu Yang 已提交
1076 1077
    helper = LayerHelper('read_file')
    out = [
X
Xin Pan 已提交
1078
        helper.create_variable_for_type_inference(
Y
Yu Yang 已提交
1079
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
1080
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
1081 1082
    ]
    helper.append_op(
F
fengjiayi 已提交
1083
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
1084 1085 1086 1087
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
1088 1089 1090


class Preprocessor(object):
X
Xin Pan 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099
    """
    A block for data pre-processing in reader.

    Args:
        reader (Variable): A reader variable.
        name (str, default None): The name of the reader.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1100

X
Xin Pan 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
            preprocessor = fluid.layers.io.Preprocessor(reader=reader)
            with preprocessor.block():
                img, lbl = preprocessor.inputs()
                img_out = img / 2
                lbl_out = lbl + 1
                preprocessor.outputs(img_out, lbl_out)

            data_file = fluid.layers.io.double_buffer(preprocessor())

    """
F
fengjiayi 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

X
Xin Pan 已提交
1127
    def _is_completed(self):
F
fengjiayi 已提交
1128 1129
        return self.sub_block and self.source_var_names and self.sink_var_names

S
rename  
sneaxiy 已提交
1130
    @signature_safe_contextmanager
F
fengjiayi 已提交
1131 1132
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
W
Wu Yi 已提交
1133
        self.sub_block = self.main_prog._create_block()
F
fengjiayi 已提交
1134
        yield
W
Wu Yi 已提交
1135
        self.main_prog._rollback()
F
fengjiayi 已提交
1136
        self.status = Preprocessor.AFTER_SUB_BLOCK
X
Xin Pan 已提交
1137
        if not self._is_completed():
F
fengjiayi 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
1153 1154
        self.source_var_names = [
            unique_name("preprocessor_source")
M
minqiyang 已提交
1155
            for _ in six.moves.range(len(source_shapes))
F
fengjiayi 已提交
1156
        ]
F
fengjiayi 已提交
1157
        source_vars = []
F
fengjiayi 已提交
1158 1159 1160
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
1161
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
1162
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)