io.py 37.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
fengjiayi 已提交
14
import contextlib
15
import multiprocessing
M
minqiyang 已提交
16
import six
Y
yuyang18 已提交
17
import threading
D
dzhwinter 已提交
18

Y
yuyang18 已提交
19
from ..data_feeder import DataFeeder
20 21
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
22
from .. import core
Y
Refine  
Yu Yang 已提交
23
from ..executor import global_scope
Y
yuyang18 已提交
24
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
Y
yuyang18 已提交
25
    default_startup_program, program_guard, Program
Y
yuyang18 已提交
26 27
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
Y
Yu Yang 已提交
28

Y
Yu Yang 已提交
29
__all__ = [
X
Xin Pan 已提交
30
    'data', 'open_recordio_file', 'open_files', 'read_file', 'shuffle', 'batch',
S
sneaxiy 已提交
31 32
    'double_buffer', 'random_data_generator', 'py_reader', 'Preprocessor',
    'load'
Y
Yu Yang 已提交
33
]
Y
Yu Yang 已提交
34 35 36 37 38 39 40 41 42 43


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
44
    **Data Layer**
Y
Yu Yang 已提交
45

K
kavyasrinet 已提交
46
    This function takes in the input and based on whether data has
C
caoying03 已提交
47
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
48
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
49
    following operators in the graph.
Y
Yu Yang 已提交
50 51 52 53

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
70 71 72
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
M
minqiyang 已提交
73
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
74 75 76 77 78 79 80 81 82
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
83
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
84 85 86 87 88
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
89 90
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
91
    return data_var
T
typhoonzero 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
117
    **ListenAndServ Layer**
T
typhoonzero 已提交
118

Y
yi.wu 已提交
119 120 121 122 123 124 125 126 127
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
128

Y
yi.wu 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    Examples:
        .. code-block:: python

            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
144 145
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
146 147
    """

Y
Yancey1989 已提交
148
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
149
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
150
        self.inputs = inputs
T
typhoonzero 已提交
151 152 153
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
154 155
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
156
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
170 171 172 173 174 175 176 177
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
178 179
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
180 181 182

        return params, grads

T
typhoonzero 已提交
183 184 185 186 187 188 189
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
190 191 192 193 194 195
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
196
            type='listen_and_serv',
Y
Yancey1989 已提交
197
            inputs={"X": self.inputs},
T
typhoonzero 已提交
198 199 200 201
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
202 203 204
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
205
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
206
                'grad_to_block_id': [""]
T
typhoonzero 已提交
207 208 209
            })


Y
yi.wu 已提交
210
def Send(endpoints, send_vars, sync=True):
T
typhoonzero 已提交
211
    """
Y
yi.wu 已提交
212 213
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
214 215

    Args:
Y
yi.wu 已提交
216
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
217
                   of send_vars to send
Y
yi.wu 已提交
218 219
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
220 221 222 223 224

    """
    assert (type(send_vars) == list)

    epmap = endpoints.split(",")
T
typhoonzero 已提交
225
    endpoints = list(set(epmap))
T
typhoonzero 已提交
226 227

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
228
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
229

T
typhoonzero 已提交
230 231 232
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
Y
Yancey1989 已提交
233 234 235 236 237
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
238 239
    if sync:
        helper.append_op(type="send_barrier", attrs={"endpoints": endpoints})
240 241


Y
yi.wu 已提交
242
def Recv(endpoints, get_vars, sync=True):
243
    """
Y
yi.wu 已提交
244
    Receive variables from server side
245 246

    Args:
Y
yi.wu 已提交
247
        endpoints (str): comma seperated IP:PORT pairs in the order
248
                   of send_vars to send
Y
yi.wu 已提交
249 250
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
251

Y
yi.wu 已提交
252 253
    Returns:
        list: list of received variables
254 255 256 257 258 259 260 261 262 263 264 265 266
    """
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
        inputs={"X": get_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
267 268 269
    if sync:
        helper.append_op(type="fetch_barrier", attrs={"endpoints": endpoints})
    return get_vars
Y
Yu Yang 已提交
270 271


Y
Refine  
Yu Yang 已提交
272 273 274 275 276 277 278 279 280 281
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
282 283
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
284 285 286
    return reader


Y
Yu Yang 已提交
287 288 289 290 291
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
F
fengjiayi 已提交
292 293 294 295
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
312
    new_op = block.append_op(
F
fengjiayi 已提交
313 314 315
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
316
        attrs=op.all_attrs())
F
fengjiayi 已提交
317
    return new_op
Y
Yu Yang 已提交
318 319


Y
yuyang18 已提交
320
@templatedoc(op_type='create_recordio_file_reader')
F
fengjiayi 已提交
321 322 323 324 325
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
F
fengjiayi 已提交
326
                       for_parallel=True):
F
fengjiayi 已提交
327
    """
Y
yuyang18 已提交
328
    ${comment}
F
fengjiayi 已提交
329 330

    Args:
Y
yuyang18 已提交
331
       filename(${filename_type}): ${filename_comment}.
F
fengjiayi 已提交
332
       shapes(list): List of tuples which declaring data shapes.
Y
yuyang18 已提交
333
       lod_levels(${lod_levels_type}): ${lod_levels_comment}.
F
fengjiayi 已提交
334
       dtypes(list): List of strs which declaring data type.
F
fengjiayi 已提交
335
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
336 337 338 339
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
Y
yuyang18 已提交
340
       ${out_comment}.
F
fengjiayi 已提交
341 342 343

    Examples:

Y
yuyang18 已提交
344 345 346 347 348 349 350 351
        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.io.open_recordio_file(
        >>>                               filename='./data.recordio',
        >>>                               shapes=[(3,224,224), (1)],
        >>>                               lod_levels=[0, 0],
        >>>                               dtypes=['float32', 'int64'])
        >>> # Via the reader, we can use 'read_file' layer to get data:
        >>> image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
352
    """
Y
Yu Yang 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
377 378
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
379 380 381 382

    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)

F
fengjiayi 已提交
383
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
384 385


F
fengjiayi 已提交
386 387 388 389 390
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
391 392 393
    Instead of opening a file and reading data from it, this
    Reader Variable generates float uniform random data by itself.
    It can be used as a dummy reader to test a network without
F
fengjiayi 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:

409
        .. code-block:: python
F
fengjiayi 已提交
410

411 412 413 414 415 416 417
            reader = fluid.layers.random_data_generator(
                                             low=0.0,
                                             high=1.0,
                                             shapes=[[3,224,224], [1]],
                                             lod_levels=[0, 0])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    return monkey_patch_reader_methods(main_prog_var)


Y
yuyang18 已提交
450 451 452 453 454 455
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
              use_double_buffer=True):
S
sneaxiy 已提交
456
    """
457
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
458

459
    This layer returns a Reader Variable.
460 461
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
462 463 464 465 466 467 468 469
    source in Python side. When :code:`Executor::Run()` is invoked in C++
    side, the data from the generator would be read automatically. Unlike
    :code:`DataFeeder.feed()`, the data reading process and
    :code:`Executor::Run()` process can run in parallel using
    :code:`py_reader`. The :code:`start()` method of the Reader should be
    called when each pass begins, while the :code:`reset()` method should be
    called when the pass ends and :code:`fluid.core.EOFException` raises.
    Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
S
sneaxiy 已提交
470 471

    Args:
472
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
Y
yuyang18 已提交
473 474 475 476 477
       shapes(list|tuple): List of tuples which declaring data shapes.
       dtypes(list|tuple): List of strs which declaring data type.
       lod_levels(list|tuple): List of ints which declaring data lod_level.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
478
       use_double_buffer(bool): Whether use double buffer or not.
S
sneaxiy 已提交
479 480

    Returns:
481
       Variable: A Reader from which we can get feeding data.
S
sneaxiy 已提交
482 483 484

    Examples:

485
        1. The basic usage of :code:`py_reader` is as follows:
S
sneaxiy 已提交
486

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
        >>> import paddle.v2
        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> reader = fluid.layers.py_reader(capacity=64,
        >>>                                 shapes=[(-1,3,224,224), (-1,1)],
        >>>                                 dtypes=['float32', 'int64'])
        >>> reader.decorate_paddle_reader(
        >>>     paddle.v2.reader.shuffle(paddle.batch(mnist.train())
        >>>
        >>> img, label = fluid.layers.read_file(reader)
        >>> loss = network(img, label) # some network definition
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
        >>>
        >>> exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
        >>> for epoch_id in range(10):
        >>>     reader.start()
        >>>     try:
        >>>         while True:
        >>>             exe.run(fetch_list=[loss.name])
        >>>     except fluid.core.EOFException:
        >>>         reader.reset()

        2. When training and testing are both performed, two different
        :code:`py_reader` should be created with different names, e.g.:

        >>> import paddle.v2
        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> def network(reader):
        >>>     img, label = fluid.layers.read_file(reader)
        >>>     # Here, we omitted the network definition
        >>>     return loss
        >>>
        >>> train_reader = fluid.layers.py_reader(capacity=64,
        >>>                                       shapes=[(-1,3,224,224), (-1,1)],
        >>>                                       dtypes=['float32', 'int64'],
        >>>                                       name='train_reader')
        >>> train_reader.decorate_paddle_reader(
        >>>     paddle.v2.reader.shuffle(paddle.batch(mnist.train())
        >>>
        >>> test_reader = fluid.layers.py_reader(capacity=32,
        >>>                                      shapes=[(-1,3,224,224), (-1,1)],
        >>>                                      dtypes=['float32', 'int64'],
        >>>                                      name='test_reader')
        >>> test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
        >>>
        >>> # Create train_main_prog and train_startup_prog
        >>> train_main_prog = fluid.Program()
        >>> train_startup_prog = fluid.Program()
        >>> with fluid.program_guard(train_main_prog, train_startup_prog):
        >>>     # Use fluid.unique_name.guard() to share parameters with test program
        >>>     with fluid.unique_name.guard():
        >>>         train_loss = network(train_reader) # some network definition
        >>>         adam = fluid.optimizer.Adam(learning_rate=0.01)
        >>>         adam.minimize(loss)
        >>>
        >>> # Create test_main_prog and test_startup_prog
        >>> test_main_prog = fluid.Program()
        >>> test_startup_prog = fluid.Program()
        >>> with fluid.program_guard(test_main_prog, test_startup_prog):
        >>>     # Use fluid.unique_name.guard() to share parameters with train program
        >>>     with fluid.unique_name.guard():
        >>>         test_loss = network(test_reader)
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)
        >>>
        >>> train_exe = fluid.ParallelExecutor(use_cuda=True,
        >>>                 loss_name=train_loss.name, main_program=train_main_prog)
        >>> test_exe = fluid.ParallelExecutor(use_cuda=True,
        >>>                 loss_name=test_loss.name, main_program=test_main_prog)
        >>> for epoch_id in range(10):
562
        >>>     train_reader.start()
563 564 565 566 567 568
        >>>     try:
        >>>         while True:
        >>>             train_exe.run(fetch_list=[train_loss.name])
        >>>     except fluid.core.EOFException:
        >>>         train_reader.reset()
        >>>
569
        >>>     test_reader.start()
570 571 572 573 574
        >>>     try:
        >>>         while True:
        >>>             test_exe.run(fetch_list=[test_loss.name])
        >>>     except fluid.core.EOFException:
        >>>         test_reader.reset()
S
sneaxiy 已提交
575 576 577 578 579 580 581 582 583
    """
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

584 585 586
    if lod_levels is None:
        lod_levels = [0] * len(shapes)

Y
yuyang18 已提交
587 588 589
    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
Y
yuyang18 已提交
590
        double_buffer_name = unique_name('double_buffer')
Y
yuyang18 已提交
591 592 593
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
Y
yuyang18 已提交
594
        double_buffer_name = "_".join([name, "double_buffer"])
Y
yuyang18 已提交
595

S
sneaxiy 已提交
596 597 598 599
    var = global_scope().var(queue_name)
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, shapes)

    startup_blk = default_startup_program().current_block()
Y
yuyang18 已提交
600
    startup_var = startup_blk.create_var(name=reader_name)
S
sneaxiy 已提交
601 602
    startup_blk.append_op(
        type='create_py_reader',
Y
yuyang18 已提交
603
        inputs={'blocking_queue': [queue_name]},
S
sneaxiy 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

Y
yuyang18 已提交
617 618
    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
Y
yuyang18 已提交
619 620 621 622 623
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader
Y
yuyang18 已提交
624 625 626 627 628 629

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
Y
yuyang18 已提交
630
    reader.exited = False
Y
yuyang18 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643

    def start_provide_thread(func):
        def __provider_thread__():
            for tensors in func():
                array = core.LoDTensorArray()
                for item in tensors:
                    if not isinstance(item, core.LoDTensor):
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

Y
yuyang18 已提交
644 645
                if reader.exited:
                    break
Y
yuyang18 已提交
646
                feed_queue.push(array)
Y
yuyang18 已提交
647 648
                if reader.exited:
                    break
Y
yuyang18 已提交
649 650 651
            feed_queue.close()

        reader.thread = threading.Thread(target=__provider_thread__)
F
fengjiayi 已提交
652
        reader.thread.daemon = True
Y
yuyang18 已提交
653 654 655
        reader.thread.start()

    def __set_tensor_provider__(func):
Y
yuyang18 已提交
656
        reader.tensor_provider = func
Y
yuyang18 已提交
657

Y
yuyang18 已提交
658
    def __set_paddle_reader__(paddle_reader):
Y
yuyang18 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672
        with program_guard(Program(), Program()):
            feed_list = []
            counter = 0
            for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                name = str(counter)
                feed_list.append(
                    data(
                        name=name,
                        dtype=dtype,
                        shape=shape,
                        lod_level=lod_level))
                counter += 1

            feeder = DataFeeder(feed_list=feed_list, place=core.CPUPlace())
Y
yuyang18 已提交
673 674
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)
Y
yuyang18 已提交
675 676

        def __tensor_provider__():
Y
yuyang18 已提交
677
            for slots in paddle_reader():
M
minqiyang 已提交
678
                yield [slots[str(idx)] for idx in six.moves.xrange(counter)]
Y
yuyang18 已提交
679 680 681 682 683 684

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
Y
yuyang18 已提交
685
            reader.exited = True
Y
yuyang18 已提交
686
            reader.thread.join()
Y
yuyang18 已提交
687 688 689 690
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)
Y
yuyang18 已提交
691 692 693 694

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
Y
yuyang18 已提交
695
    reader.start = __start__
Y
yuyang18 已提交
696 697

    return reader
S
sneaxiy 已提交
698 699


700 701 702 703
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yuyang18 已提交
704
               thread_num=None,
F
fengjiayi 已提交
705 706
               buffer_size=None,
               pass_num=1,
Y
yuyang18 已提交
707
               is_test=None):
F
fengjiayi 已提交
708 709 710
    """
    Open files

711 712 713
    This layer takes a list of files to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from given files. All files must
    have name suffixs to indicate their formats, e.g., '*.recordio'.
F
fengjiayi 已提交
714 715 716 717 718 719

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
Y
yuyang18 已提交
720 721 722
       thread_num(None): The number of thread to read files.
            Default: min(len(filenames), cpu_number).
       buffer_size(None): The buffer size of reader. Default: 3 * thread_num
F
fengjiayi 已提交
723
       pass_num(int): Number of passes to run.
Y
yuyang18 已提交
724 725 726 727
       is_test(bool|None): Whether `open_files` used for testing or not. If it
            is used for testing, the order of data generated is same as the file
            order. Otherwise, it is not guaranteed the order of data is same
            between every epoch. [Default: False].
F
fengjiayi 已提交
728 729 730 731 732 733 734

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
735
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
736
                                                     './data2.recordio'],
F
fengjiayi 已提交
737 738
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
Y
yuyang18 已提交
739
                                             dtypes=['float32', 'int64'])
F
fengjiayi 已提交
740 741

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
742
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
743
    """
Y
yuyang18 已提交
744 745 746 747 748 749 750 751 752
    if thread_num is None:
        thread_num = min(len(filenames), multiprocessing.cpu_count())
    else:
        thread_num = int(thread_num)

    if buffer_size is None:
        buffer_size = 3 * thread_num
    else:
        buffer_size = int(buffer_size)
Y
yuyang18 已提交
753

F
fengjiayi 已提交
754 755
    if isinstance(filenames, basestring):
        filenames = [filenames]
F
fengjiayi 已提交
756 757 758 759 760 761 762 763
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
764
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
765
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
766
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
Y
yuyang18 已提交
767 768 769 770
    attrs = {
        'shape_concat': shape_concat,
        'lod_levels': lod_levels,
        'ranks': ranks,
Y
yuyang18 已提交
771 772 773
        'file_names': filenames,
        'thread_num': thread_num,
        'buffer_size': buffer_size
Y
yuyang18 已提交
774 775 776
    }
    if is_test is not None:
        attrs['is_test'] = is_test
F
fengjiayi 已提交
777
    startup_blk.append_op(
Y
yuyang18 已提交
778
        type='open_files', outputs={'Out': [startup_reader]}, attrs=attrs)
F
fengjiayi 已提交
779

F
fengjiayi 已提交
780 781 782 783 784 785 786
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
787

F
fengjiayi 已提交
788 789 790
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
791
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
792 793 794
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
795
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
796 797 798 799 800
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
801 802 803 804
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
805 806


807 808
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
809 810 811 812 813 814 815 816 817 818
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
819
def shuffle(reader, buffer_size):
820 821 822
    """
    Shuffle the reader.
    """
823 824
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
825 826


J
JiayiFeng 已提交
827
def batch(reader, batch_size):
F
fengjiayi 已提交
828
    """
829 830 831
    This layer is a reader decorator. It takes a reader and adds
    'batching' decoration on it. When reading with the result
    decorated reader, output data will be automatically organized
F
fengjiayi 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
    to the form of batches.

    Args:
        reader(Variable): The reader to be decorated with 'batching'.
        batch_size(int): The batch size.

    Returns:
        Variable: The reader which has been decorated with 'batching'.

    Examples:
        .. code-block:: python

            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
                                                    shapes=[(3,224,224), (1)],
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)

            # If we read data with the raw_reader:
            #     data = fluid.layers.read_file(raw_reader)
            # We can only get data instance by instance.
856
            #
F
fengjiayi 已提交
857 858
            # However, if we read data with the batch_reader:
            #     data = fluid.layers.read_file(batch_reader)
859 860
            # Each 5 adjacent instances will be automatically combined together
            # to become a batch. So what we get('data') is a batch data instead
F
fengjiayi 已提交
861 862
            # of an instance.
    """
J
JiayiFeng 已提交
863 864 865 866
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


867
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    """
    Wrap a double buffer reader. The data will copy to target place with a
    double buffer queue. If the target place is None, the place that executor
    perform on will be used.

    Args:
        reader(Variable): the reader variable need to be wrapped.
        place(Place): the place of target data. Default is the sample place of
            executor perform.

        name(str): Variable name. None if the user does not care.

    Returns:
        wrapped reader with double buffer.

    Examples:

        >>> reader = fluid.layers.open_files(filenames=['somefile'],
        >>>                                  shapes=[[-1, 784], [-1, 1]],
        >>>                                  dtypes=['float32', 'int64'])
        >>> reader = fluid.layers.double_buffer(reader)
        >>> img, label = fluid.layers.read_file(reader)
    """
Y
Yu Yang 已提交
891 892 893
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
894 895
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
896 897


F
fengjiayi 已提交
898
def multi_pass(reader, pass_num):
899 900
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
901 902


F
fengjiayi 已提交
903
def read_file(reader):
F
fengjiayi 已提交
904
    """
F
fengjiayi 已提交
905
    Execute the given reader and get data via it.
F
fengjiayi 已提交
906

907 908
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
F
fengjiayi 已提交
909 910 911 912
    `fluid.layers.double_buffer()` and so on.

    Args:

F
fengjiayi 已提交
913
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
914 915

    Returns:
F
fengjiayi 已提交
916
        Tuple[Variable]: Data read via the given reader.
F
fengjiayi 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929

    Examples:
        .. code-block:: python

           data_file = fluid.layers.open_files(
                filenames=['mnist.recordio'],
                shapes=[(-1, 748), (-1, 1)],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"])
            data_file = fluid.layers.double_buffer(
                fluid.layers.batch(data_file, batch_size=64))
            input, label = fluid.layers.read_file(data_file)
    """
Y
Yu Yang 已提交
930 931 932 933
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
934
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
935 936
    ]
    helper.append_op(
F
fengjiayi 已提交
937
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
938 939 940 941
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
942 943 944


class Preprocessor(object):
X
Xin Pan 已提交
945 946 947 948 949 950 951 952 953
    """
    A block for data pre-processing in reader.

    Args:
        reader (Variable): A reader variable.
        name (str, default None): The name of the reader.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
954

X
Xin Pan 已提交
955 956 957 958 959 960 961 962 963 964
            preprocessor = fluid.layers.io.Preprocessor(reader=reader)
            with preprocessor.block():
                img, lbl = preprocessor.inputs()
                img_out = img / 2
                lbl_out = lbl + 1
                preprocessor.outputs(img_out, lbl_out)

            data_file = fluid.layers.io.double_buffer(preprocessor())

    """
F
fengjiayi 已提交
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

X
Xin Pan 已提交
981
    def _is_completed(self):
F
fengjiayi 已提交
982 983 984 985 986 987 988 989 990
        return self.sub_block and self.source_var_names and self.sink_var_names

    @contextlib.contextmanager
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
        self.sub_block = self.main_prog.create_block()
        yield
        self.main_prog.rollback()
        self.status = Preprocessor.AFTER_SUB_BLOCK
X
Xin Pan 已提交
991
        if not self._is_completed():
F
fengjiayi 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
1007 1008
        self.source_var_names = [
            unique_name("preprocessor_source")
M
minqiyang 已提交
1009
            for _ in six.moves.range(len(source_shapes))
F
fengjiayi 已提交
1010
        ]
F
fengjiayi 已提交
1011
        source_vars = []
F
fengjiayi 已提交
1012 1013 1014
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
1015
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
1016
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)