distributed_py.cc 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fcntl.h>
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/collective/Types.h"
26
#include "paddle/fluid/distributed/collective/reducer.h"
27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"

#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif

38 39 40 41
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif

42 43 44 45 46
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
#endif

47 48 49 50 51 52 53
namespace py = pybind11;

namespace paddle {
namespace pybind {

using Tensor = paddle::experimental::Tensor;

54 55 56 57 58 59 60 61 62 63 64 65
std::shared_ptr<distributed::EagerReducer> CreateEagerReducer(
    py::handle py_tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
    const std::vector<size_t> &group_size_limits, bool find_unused_parameters) {
  auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
  return std::make_shared<distributed::EagerReducer>(
      params, group_indices, is_sparse_gradient, process_group,
      group_size_limits, find_unused_parameters);
}

66 67 68 69 70 71 72 73
#if defined(PADDLE_WITH_GLOO)
using ProcessGroupGloo = paddle::distributed::ProcessGroupGloo;
using GlooStore = paddle::distributed::ProcessGroupGloo::GlooStore;
using GlooOptions = paddle::distributed::ProcessGroupGloo::GlooOptions;
#endif

static std::string GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";  // NOLINT

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
void BindDistributed(py::module *m) {
  py::enum_<distributed::ReduceOp>(*m, "ReduceOp")
      .value("SUM", distributed::ReduceOp::SUM)
      .value("AVG", distributed::ReduceOp::AVG)
      .value("MAX", distributed::ReduceOp::MAX)
      .value("MIN", distributed::ReduceOp::MIN)
      .value("PRODUCT", distributed::ReduceOp::PRODUCT);

  py::class_<distributed::AllreduceOptions>(*m, "AllreduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::AllreduceOptions::reduce_op);

  py::class_<distributed::BroadcastOptions>(*m, "BroadcastOptions")
      .def(py::init<>())
      .def_readwrite("source_rank", &distributed::BroadcastOptions::source_rank)
      .def_readwrite("source_root",
                     &distributed::BroadcastOptions::source_root);

B
Baibaifan 已提交
92 93 94 95
  py::class_<distributed::BarrierOptions>(*m, "BarrierOptions")
      .def(py::init<>())
      .def_readwrite("place_ids", &distributed::BarrierOptions::place_ids);

96 97 98 99 100
  py::class_<distributed::ReduceOptions>(*m, "ReduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::ReduceOptions::reduce_op)
      .def_readwrite("source_root", &distributed::ReduceOptions::root_rank);

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  auto ProcessGroup =
      py::class_<distributed::ProcessGroup,
                 std::shared_ptr<distributed::ProcessGroup>>(*m, "ProcessGroup")
          .def("rank", &distributed::ProcessGroup::GetRank)
          .def("size", &distributed::ProcessGroup::GetSize)
          .def("name", &distributed::ProcessGroup::GetBackendName)
          .def("allreduce",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  distributed::ReduceOp op) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                 distributed::AllreduceOptions opts;
                 opts.reduce_op = op;
                 std::vector<Tensor> tensors = {tensor};
                 return self.AllReduce(tensors, opts);
               },
               py::arg("tensor"), py::arg("op") = distributed::ReduceOp::SUM,
               py::call_guard<py::gil_scoped_release>())

          .def("broadcast",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  int source_rank) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                 distributed::BroadcastOptions opts;
                 opts.source_rank = source_rank;
                 std::vector<Tensor> tensors = {tensor};
                 return self.Broadcast(tensors, opts);
               },
               py::arg("tensor"), py::arg("source_rank"),
B
Baibaifan 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
               py::call_guard<py::gil_scoped_release>())

          .def("barrier",
               [](distributed::ProcessGroup &self, std::vector<int> place_ids) {
                 distributed::BarrierOptions opts;
                 opts.place_ids = place_ids;
                 return self.Barrier(opts);
               },
               py::arg("place_ids") = std::vector<int>{},
               py::call_guard<py::gil_scoped_release>())

          .def("send",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  int dst) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                 std::vector<Tensor> tensors = {tensor};
                 return self.Send(tensors, dst);
               },
               py::arg("tensor"), py::arg("dst"),
               py::call_guard<py::gil_scoped_release>())

          .def("recv",
               [](distributed::ProcessGroup &self, py::handle py_tensor,
                  int src) {
                 auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                 std::vector<Tensor> tensors = {tensor};
                 return self.Recv(tensors, src);
               },
               py::arg("tensor"), py::arg("src"),
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
               py::call_guard<py::gil_scoped_release>())

          .def("all_gather",
               [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                  py::handle py_out_tensor) {
                 auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                 auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                 std::vector<Tensor> in_tensors = {in_tensor};
                 std::vector<Tensor> out_tensors = {out_tensor};
                 return self.AllGather(in_tensors, out_tensors);
               },
               py::arg("in"), py::arg("out"),
               py::call_guard<py::gil_scoped_release>())

          .def("alltoall",
               [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                  py::handle py_out_tensor) {
                 auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                 auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                 std::vector<Tensor> in_tensors = {in_tensor};
                 std::vector<Tensor> out_tensors = {out_tensor};
                 return self.AllToAll(in_tensors, out_tensors);
               },
               py::arg("in"), py::arg("out"),
               py::call_guard<py::gil_scoped_release>())

          .def("reduce",
               [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                  int dst, distributed::ReduceOp op) {
                 auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                 distributed::ReduceOptions opts;
                 opts.reduce_op = op;
                 opts.root_rank = dst;
                 std::vector<Tensor> tensors = {in_tensor};
                 return self.Reduce(tensors, opts);
               },
               py::arg("tensor"), py::arg("dst"),
               py::arg("op") = distributed::ReduceOp::SUM,
               py::call_guard<py::gil_scoped_release>())

          .def("scatter",
               [](distributed::ProcessGroup &self, py::handle py_in_tensor,
                  py::handle py_out_tensor, int src) {
                 auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                 auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                 distributed::ScatterOptions opts;
                 opts.root_rank = src;
                 std::vector<Tensor> in_tensors = {in_tensor};
                 std::vector<Tensor> out_tensors = {out_tensor};
                 return self.Scatter(in_tensors, out_tensors, opts);
               },
               py::arg("in"), py::arg("out"), py::arg("src"),
210 211 212 213 214 215
               py::call_guard<py::gil_scoped_release>());

#if defined(PADDLE_WITH_NCCL)
  py::class_<distributed::ProcessGroupNCCL,
             std::shared_ptr<distributed::ProcessGroupNCCL>>(
      *m, "ProcessGroupNCCL", ProcessGroup)
L
lilong12 已提交
216 217 218 219
      .def(py::init<const std::shared_ptr<distributed::Store> &, int, int,
                    int>(),
           py::arg("store"), py::arg("rank"), py::arg("world_size"),
           py::arg("group_id") = 0, py::call_guard<py::gil_scoped_release>());
220
#endif
221

222 223 224 225
#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<distributed::ProcessGroupHCCL,
             std::shared_ptr<distributed::ProcessGroupHCCL>>(
      *m, "ProcessGroupHCCL", ProcessGroup)
L
lilong12 已提交
226 227 228 229
      .def(py::init<const std::shared_ptr<distributed::Store> &, int, int,
                    int>(),
           py::arg("store"), py::arg("rank"), py::arg("world_size"),
           py::arg("group_id") = 0, py::call_guard<py::gil_scoped_release>());
230 231
#endif

232 233 234 235 236 237 238 239 240
  py::class_<distributed::ProcessGroup::Task,
             std::shared_ptr<distributed::ProcessGroup::Task>>(*m, "task")
      .def("is_completed", &distributed::ProcessGroup::Task::IsCompleted)
      .def("wait", &distributed::ProcessGroup::Task::Wait,
           py::arg("timeout") = kWaitTimeout,
           py::call_guard<py::gil_scoped_release>())
      .def("synchronize", &distributed::ProcessGroup::Task::Synchronize,
           py::call_guard<py::gil_scoped_release>());

241 242 243
#if defined(PADDLE_WITH_GLOO)
  py::class_<ProcessGroupGloo, std::shared_ptr<ProcessGroupGloo>>(
      *m, "ProcessGroupGloo", ProcessGroup)
244
      .def(py::init<const std::shared_ptr<paddle::distributed::Store> &, int,
L
lilong12 已提交
245
                    int, int, std::shared_ptr<GlooOptions> &>(),
246
           py::call_guard<py::gil_scoped_release>())
247
      .def(py::init([](const std::shared_ptr<paddle::distributed::Store> &store,
L
lilong12 已提交
248
                       int rank, int world_size, int gid) {
249 250 251 252 253 254 255 256 257
             auto opts = GlooOptions::create();
             char *ifname = getenv(GLOO_SOCKET_IFNAME_ENV.c_str());
             if (ifname && strlen(ifname) > 1) {
               opts->device = ProcessGroupGloo::createDeviceForInterface(
                   std::string(ifname));
             } else {
               opts->device = ProcessGroupGloo::createDefaultDevice();
             }
             return std::make_shared<ProcessGroupGloo>(store, rank, world_size,
L
lilong12 已提交
258
                                                       gid, opts);
259
           }),
260
           py::arg("store"), py::arg("rank"), py::arg("world_size"),
L
lilong12 已提交
261
           py::arg("group_id") = 0, py::call_guard<py::gil_scoped_release>())
262 263 264 265
      .def_static("create_default_device",
                  &ProcessGroupGloo::createDefaultDevice);
#endif

266 267 268 269 270 271 272 273 274 275 276 277
  m->def("eager_assign_group_by_size",
         [](py::handle py_tensors, std::vector<bool> is_sparse_gradient,
            std::vector<size_t> group_size_limits,
            std::vector<int64_t> tensor_indices) {
           auto tensors = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
           return distributed::Eager_AssignGroupBySize(
               tensors, is_sparse_gradient, group_size_limits, tensor_indices);
         },
         py::arg("tensors"), py::arg("is_sparse_gradient"),
         py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
         py::arg("tensor_indices") = std::vector<int64_t>{},
         py::call_guard<py::gil_scoped_release>());
278 279 280 281 282 283 284 285 286 287 288

  py::class_<distributed::EagerReducer,
             std::shared_ptr<distributed::EagerReducer>>(*m, "EagerReducer",
                                                         R"DOC()DOC")
      .def(py::init(&CreateEagerReducer))
      .def("prepare_for_backward",
           [](distributed::EagerReducer &self, py::handle py_tensors) {
             auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
             self.PrepareForBackward(params);
           },
           py::arg("tensors"), py::call_guard<py::gil_scoped_release>());
289 290 291 292
}

}  // end namespace pybind
}  // namespace paddle