batch_norm_op.cu 35.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <cfloat>
17 18 19
#include <string>
#include <vector>
#include "cub/cub.cuh"
S
Siddharth Goyal 已提交
20
#include "paddle/fluid/framework/data_layout.h"
21
#include "paddle/fluid/operators/batch_norm_op.h"
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
24
#include "paddle/fluid/platform/float16.h"
Q
Qiao Longfei 已提交
25

26
DECLARE_bool(cudnn_batchnorm_spatial_persistent);
W
Wu Yi 已提交
27

Q
Qiao Longfei 已提交
28 29 30 31
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
32
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
33 34
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
K
Kexin Zhao 已提交
35
template <typename T>
K
update  
Kexin Zhao 已提交
36
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;
Q
Qiao Longfei 已提交
37 38

template <typename T>
Q
QI JUN 已提交
39 40
class BatchNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
41 42
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
K
Kaipeng Deng 已提交
43 44 45
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("It must use CUDAPlace."));
Q
Qiao Longfei 已提交
46
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
47
    float momentum = ctx.Attr<float>("momentum");
Q
Qiao Longfei 已提交
48
    const bool is_test = ctx.Attr<bool>("is_test");
49
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
50
    const bool trainable_stats = ctx.Attr<bool>("trainable_statistics");
Q
QI JUN 已提交
51 52 53
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
54

55 56
    bool test_mode = is_test && (!trainable_stats);

Q
Qiao Longfei 已提交
57 58 59 60
    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
61 62
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
63

64 65 66
    auto *y = ctx.Output<Tensor>("Y");
    y->mutable_data<T>(ctx.GetPlace());

67 68 69 70 71
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);

    auto dtype = platform::CudnnDataType<T>::type;
    const bool fast_nhwc_batch_norm =
72
        test_mode ||
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        (dtype == CUDNN_DATA_HALF && FLAGS_cudnn_batchnorm_spatial_persistent);

    auto compute_format =
        fast_nhwc_batch_norm && data_layout == DataLayout::kNHWC
            ? DataLayout::kNHWC
            : DataLayout::kNCHW;

    Tensor transformed_x(x->type());
    Tensor transformed_y(y->type());
    if (data_layout == DataLayout::kNHWC &&
        compute_format == DataLayout::kNCHW && x_dims.size() > 2) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                           &transformed_x);
      TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                          &transformed_x);
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, y,
                                                           &transformed_y);
    } else {
      transformed_x.ShareDataWith(*x);
      transformed_y.ShareDataWith(*y);
    }

Q
Qiao Longfei 已提交
96 97 98 99 100
    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

101 102 103
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
Qiao Longfei 已提交
104 105 106 107 108 109 110 111
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
112
#if CUDNN_VERSION_MIN(7, 0, 0)
W
Wu Yi 已提交
113 114 115 116 117
    if (FLAGS_cudnn_batchnorm_spatial_persistent) {
      mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
    } else {
      mode_ = CUDNN_BATCHNORM_SPATIAL;
    }
118
#else
Q
Qiao Longfei 已提交
119
    mode_ = CUDNN_BATCHNORM_SPATIAL;
120
#endif
Q
Qiao Longfei 已提交
121

M
minqiyang 已提交
122
    VLOG(3) << "Setting descriptors.";
Q
Qiao Longfei 已提交
123 124
    std::vector<int> dims;
    std::vector<int> strides;
125
    if (compute_format == DataLayout::kNCHW) {
Q
Qiao Longfei 已提交
126 127 128 129 130 131
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * D * C, 1, W * D * C, D * C, C};
    }
132
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
Qiao Longfei 已提交
133 134
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
K
Kexin Zhao 已提交
135
    // Note: PERSISTENT not implemented for inference
136 137 138
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDeriveBNTensorDescriptor(
            bn_param_desc_, data_desc_,
139
            test_mode ? CUDNN_BATCHNORM_SPATIAL : mode_));
Q
Qiao Longfei 已提交
140 141 142 143

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

Q
QI JUN 已提交
144
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
Qiao Longfei 已提交
145

Q
QI JUN 已提交
146
    auto handle = dev_ctx.cudnn_handle();
Q
Qiao Longfei 已提交
147 148

    // Now, depending on whether we are running test or not, we have two paths.
149
    if (test_mode || use_global_stats) {
Q
Qiao Longfei 已提交
150 151 152 153 154 155 156 157 158
      // only when test we use input to do computation.
      const auto *est_mean = ctx.Input<Tensor>("Mean");
      const auto *est_var = ctx.Input<Tensor>("Variance");
      // Run inference mode.
      PADDLE_ENFORCE_EQ(est_mean->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_var->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_mean->dims()[0], C);
      PADDLE_ENFORCE_EQ(est_var->dims()[0], C);

159 160 161 162 163 164 165 166 167 168 169 170
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnBatchNormalizationForwardInference(
              handle,
              // Note: PERSISTENT not implemented for inference
              CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
              CudnnDataType<T>::kZero(), data_desc_,
              transformed_x.template data<T>(), data_desc_,
              transformed_y.template mutable_data<T>(ctx.GetPlace()),
              bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
              bias->template data<BatchNormParamType<T>>(),
              est_mean->template data<BatchNormParamType<T>>(),
              est_var->template data<BatchNormParamType<T>>(), epsilon));
Q
Qiao Longfei 已提交
171
    } else {
172 173 174 175 176 177 178 179 180
      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        Tensor mom_cpu;
        TensorCopySync(*mom_tensor, platform::CPUPlace(), &mom_cpu);
        momentum = mom_cpu.data<float>()[0];
      }

Q
Qiao Longfei 已提交
181 182 183
      // Run training mode.
      // obtain running mean and running inv var, and see if we need to
      // initialize them.
D
Dang Qingqing 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

      auto *mean_out = ctx.Output<Tensor>("MeanOut");
      auto *variance_out = ctx.Output<Tensor>("VarianceOut");
      mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());

      auto *saved_mean = ctx.Output<Tensor>("SavedMean");
      auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
      saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
          functor;
      functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
      functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));

199
      if ((N * H * W * D) == 1) {
200 201
        // Only 1 element in normalization dimension,
        // skip the batch norm calculation, let y = x.
202
        framework::TensorCopy(*x, ctx.GetPlace(), y);
203 204 205
      } else {
        double this_factor = 1. - momentum;

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        bool called = false;
#if CUDNN_VERSION_MIN(7, 4, 1)
        if (compute_format == DataLayout::kNHWC) {
          called = true;
          size_t workspace_size = 0;
          size_t reserve_space_size = 0;
          void *reserve_space_ptr = nullptr;
          void *workspace_ptr = nullptr;
          Tensor workspace_tensor;
          // Create reserve space and workspace for batch norm.
          // Create tensor for each batchnorm op, it will be used in the
          // backward. Thus this tensor shouldn't be temp.
          auto *reserve_space = ctx.Output<Tensor>("ReserveSpace");
          PADDLE_ENFORCE_NOT_NULL(
              reserve_space,
              platform::errors::NotFound(
                  "The argument ReserveSpace of batch_norm op is not found."));

          // --------------- cudnn batchnorm workspace ---------------
225
          PADDLE_ENFORCE_CUDA_SUCCESS(
226 227 228 229 230 231 232 233 234 235 236 237 238
              platform::dynload::
                  cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(
                      /*handle=*/handle,
                      /*mode=*/mode_,
                      /*bnIps=*/CUDNN_BATCHNORM_OPS_BN,
                      /*xDesc=*/data_desc_,
                      /*zDesc=*/nullptr,
                      /*yDesc=*/data_desc_,
                      /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
                      /*activationDesc=*/nullptr,
                      /*sizeInBytes=*/&workspace_size));

          // -------------- cudnn batchnorm reserve space --------------
239
          PADDLE_ENFORCE_CUDA_SUCCESS(
240 241 242 243 244 245 246 247 248 249 250 251 252
              platform::dynload::
                  cudnnGetBatchNormalizationTrainingExReserveSpaceSize(
                      /*handle=*/handle,
                      /*mode=*/mode_,
                      /*bnOps=*/CUDNN_BATCHNORM_OPS_BN,
                      /*activationDesc=*/nullptr,
                      /*xDesc=*/data_desc_,
                      /*sizeInBytes=*/&reserve_space_size));

          reserve_space_ptr = reserve_space->mutable_data(
              ctx.GetPlace(), transformed_x.type(), reserve_space_size);
          workspace_ptr = workspace_tensor.mutable_data(
              ctx.GetPlace(), transformed_x.type(), workspace_size);
253
          PADDLE_ENFORCE_CUDA_SUCCESS(
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
              platform::dynload::cudnnBatchNormalizationForwardTrainingEx(
                  handle, mode_, CUDNN_BATCHNORM_OPS_BN,
                  CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
                  data_desc_, transformed_x.template data<T>(), nullptr,
                  nullptr, data_desc_, transformed_y.template data<T>(),
                  bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
                  bias->template data<BatchNormParamType<T>>(), this_factor,
                  mean_out->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  variance_out->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  epsilon,
                  saved_mean->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  saved_variance->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  nullptr, workspace_ptr, workspace_size, reserve_space_ptr,
                  reserve_space_size));
        }
#endif
        if (!called) {
275
          PADDLE_ENFORCE_CUDA_SUCCESS(
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
              platform::dynload::cudnnBatchNormalizationForwardTraining(
                  handle, mode_, CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), data_desc_,
                  transformed_x.template data<T>(), data_desc_,
                  transformed_y.template mutable_data<T>(ctx.GetPlace()),
                  bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
                  bias->template data<BatchNormParamType<T>>(), this_factor,
                  mean_out->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  variance_out->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  epsilon,
                  saved_mean->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  saved_variance->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace())));
        }
293
      }
Q
Qiao Longfei 已提交
294 295
    }

296 297 298 299 300 301
    if (data_layout == DataLayout::kNHWC &&
        compute_format == DataLayout::kNCHW && x_dims.size() > 2) {
      VLOG(3) << "Transform batchnorm output from NCHW to NHWC";
      TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
          ctx, &transformed_y, y);
    }
Q
Qiao Longfei 已提交
302
    // clean when exit.
303 304 305
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
Qiao Longfei 已提交
306 307 308 309
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
template <typename T, int BlockDim, framework::DataLayout layout>
static __global__ void KeBNBackwardScaleBias(
    const T *dy, const T *x, const BatchNormParamType<T> *mean,
    const BatchNormParamType<T> *variance, const double epsilon, const int N,
    const int C, const int HxW, BatchNormParamType<T> *dscale,
    BatchNormParamType<T> *dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> ds_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> db_sum = static_cast<BatchNormParamType<T>>(0);

    BatchNormParamType<T> inv_var_i = 1.0 / sqrt(variance[i] + epsilon);
    BatchNormParamType<T> mean_i = mean[i];
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      ds_sum += static_cast<BatchNormParamType<T>>(dy[index]) *
                (static_cast<BatchNormParamType<T>>(x[index]) - mean_i);
      db_sum += static_cast<BatchNormParamType<T>>(dy[index]);
    }
    ds_sum = BlockReduce(ds_storage).Reduce(ds_sum, cub::Sum());
    db_sum = BlockReduce(db_storage).Reduce(db_sum, cub::Sum());
    if (threadIdx.x == 0) {
      dscale[i] = ds_sum * inv_var_i;
      dbias[i] = db_sum;
    }
    __syncthreads();
  }
}

Q
qingqing01 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
template <typename T, framework::DataLayout layout>
static __global__ void KeBNBackwardData(const T *dy,
                                        const BatchNormParamType<T> *scale,
                                        const BatchNormParamType<T> *variance,
                                        const double epsilon, const int C,
                                        const int HxW, const int num, T *dx) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C;
    BatchNormParamType<T> inv_var = 1.0 / sqrt(variance[c] + epsilon);
    dx[i] = static_cast<T>(static_cast<BatchNormParamType<T>>(dy[i]) *
                           scale[c] * inv_var);
  }
}

K
Kaipeng Deng 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
template <typename T>
static __global__ void KeBNRestoreData(const framework::DataLayout layout, T *x,
                                       const BatchNormParamType<T> *scale,
                                       const BatchNormParamType<T> *bias,
                                       const BatchNormParamType<T> *mean,
                                       const BatchNormParamType<T> *variance,
                                       double epsilon, int C, int M,
                                       const int num, const T *y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? (i / M) % C : i % C;
    auto y_i = static_cast<BatchNormParamType<T>>(y[i]);
    auto x_i = (y_i - bias[c]) / scale[c] / variance[c] + mean[c];
    x[i] = static_cast<T>(x_i);
  }
}

template <typename T>
class InplaceHelper {
 public:
  void operator()(const framework::DataLayout layout, T *x,
                  const BatchNormParamType<T> *scale,
                  const BatchNormParamType<T> *bias,
                  const BatchNormParamType<T> *mean,
                  const BatchNormParamType<T> *variance, double epsilon, int C,
                  int M, const int num, const T *y, int grid2, const int block,
                  const cudaStream_t &stream) {
    PADDLE_ENFORCE_EQ(x, y, platform::errors::InvalidArgument(
                                "X and Y should be inplaced in inplace mode"));
    KeBNRestoreData<<<grid2, block, 0, stream>>>(
        layout, x, scale, bias, mean, variance, epsilon, C, M, num, y);
  }
};

L
lvmengsi 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
template <typename T, int BlockDim, framework::DataLayout layout>
static __global__ void BNBackwardData(const T *dy,
                                      const BatchNormParamType<T> *scale,
                                      const BatchNormParamType<T> *mean,
                                      const T *x,
                                      const BatchNormParamType<T> *variance,
                                      const int C, const int N, const int HxW,
                                      T *dx) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage dy_x_sub_mean_storage;
  __shared__ BatchNormParamType<T> dy_sum_val;
  __shared__ BatchNormParamType<T> dy_x_sub_mean_sum_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> inv_var_i = variance[i];
    BatchNormParamType<T> mean_i = mean[i];
    BatchNormParamType<T> dy_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> dy_x_sub_mean_sum =
        static_cast<BatchNormParamType<T>>(0);
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> dy_i =
          static_cast<BatchNormParamType<T>>(dy[index]);
      dy_sum += dy_i;
      dy_x_sub_mean_sum +=
          dy_i * (static_cast<BatchNormParamType<T>>(x[index]) - mean_i);
    }

    dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
    dy_x_sub_mean_sum = BlockReduce(dy_x_sub_mean_storage)
                            .Reduce(dy_x_sub_mean_sum, cub::Sum());

    if (threadIdx.x == 0) {
      dy_sum_val = dy_sum;
      dy_x_sub_mean_sum_val = dy_x_sub_mean_sum;
    }
    __syncthreads();

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      dx[index] =
          (static_cast<BatchNormParamType<T>>(dy[index]) -
           dy_sum_val / static_cast<BatchNormParamType<T>>(inner_size) -
           (static_cast<BatchNormParamType<T>>(x[index]) - mean_i) *
               dy_x_sub_mean_sum_val * inv_var_i * inv_var_i / inner_size) *
          scale[i] * inv_var_i;
    }
  }
}

Q
Qiao Longfei 已提交
454
template <typename T>
Q
QI JUN 已提交
455
class BatchNormGradKernel<platform::CUDADeviceContext, T>
Q
Qiao Longfei 已提交
456 457 458
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
K
Kaipeng Deng 已提交
459 460 461
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("It must use CUDAPlace."));
Q
Qiao Longfei 已提交
462
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
Q
QI JUN 已提交
463
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
464 465
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");

Q
QI JUN 已提交
466 467
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
468 469
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
K
Kaipeng Deng 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    const auto *bias = ctx.Input<Tensor>("Bias");

    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    // batch_norm with inplace as false will take X as grad input, which
    // is same as cuDNN batch_norm backward calculation, batch_norm
    // with inplace as true only take Y as input and X should be calculate
    // by inverse operation of batch_norm on Y
    const Tensor *x;
    bool is_inplace;
    if (ctx.HasInput("Y")) {
      x = ctx.Input<Tensor>("Y");
      is_inplace = true;
      PADDLE_ENFORCE_EQ(d_x, d_y,
                        platform::errors::InvalidArgument(
                            "X@GRAD and Y@GRAD not inplace in inplace mode"));
    } else {
      x = ctx.Input<Tensor>("X");
      is_inplace = false;
      PADDLE_ENFORCE_NE(d_x, d_y,
                        platform::errors::InvalidArgument(
                            "X@GRAD and Y@GRAD inplaced in non-inplace mode"));
    }

496 497 498 499 500 501 502
    const bool is_test = ctx.Attr<bool>("is_test");
    PADDLE_ENFORCE_EQ(
        is_test, false,
        platform::errors::InvalidArgument(
            "`is_test = True` CANNOT be used in train program. If "
            "you want to use global status in pre_train model, "
            "please set `use_global_stats = True`"));
Q
Qiao Longfei 已提交
503 504 505

    const auto &x_dims = x->dims();

506 507
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
508
    int N, C, H, W, D;
Q
QI JUN 已提交
509
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
510

511 512
    // init output
    d_x->mutable_data<T>(ctx.GetPlace());
K
Kaipeng Deng 已提交
513

514 515 516
    if (d_scale && d_bias) {
      d_scale->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      d_bias->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
517
    }
Q
Qiao Longfei 已提交
518 519 520
    PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL);
    PADDLE_ENFORCE_EQ(scale->dims()[0], C);

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    auto dtype = platform::CudnnDataType<T>::type;
    const auto *reserve_space = ctx.Input<Tensor>("ReserveSpace");
    const bool fast_nhwc_batch_norm =
        dtype == CUDNN_DATA_HALF && FLAGS_cudnn_batchnorm_spatial_persistent &&
        reserve_space != nullptr;
    auto compute_format =
        fast_nhwc_batch_norm && data_layout == DataLayout::kNHWC
            ? DataLayout::kNHWC
            : DataLayout::kNCHW;

    Tensor transformed_x(x->type());
    Tensor transformed_d_y(d_y->type());
    Tensor transformed_d_x(d_x->type());
    if (data_layout == DataLayout::kNHWC &&
        compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                           &transformed_x);
      TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, x,
                                                          &transformed_x);
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_y,
                                                           &transformed_d_y);
      TransToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_y,
                                                          &transformed_d_y);
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, d_x,
                                                           &transformed_d_x);
    } else {
      transformed_x.ShareDataWith(*x);
      transformed_d_y.ShareDataWith(*d_y);
      transformed_d_x.ShareDataWith(*d_x);
    }

Z
zchen0211 已提交
553 554
    std::vector<int> dims;
    std::vector<int> strides;
555
    if (compute_format == DataLayout::kNCHW) {
Z
zchen0211 已提交
556 557 558 559 560 561
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * C * D, 1, W * D * C, D * C, C};
    }
Q
Qiao Longfei 已提交
562

563
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
564
    const int num = transformed_x.numel();
L
lvmengsi 已提交
565 566 567 568 569
    const int block = 512;
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid1 = (num + block - 1) / block;
    int grid2 = std::min(C, max_blocks);
K
Kaipeng Deng 已提交
570 571
    auto stream = dev_ctx.stream();
    InplaceHelper<T> inplace_functor;
L
lvmengsi 已提交
572

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    if (!use_global_stats) {
      if ((N * H * W * D) == 1) {
        framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
        math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
            functor;
        functor(dev_ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
        functor(dev_ctx, d_bias, static_cast<BatchNormParamType<T>>(0));
        return;
      }

      // ------------------- cudnn descriptors ---------------------
      cudnnTensorDescriptor_t data_desc_;
      cudnnTensorDescriptor_t bn_param_desc_;
      cudnnBatchNormMode_t mode_;

588
      PADDLE_ENFORCE_CUDA_SUCCESS(
589
          platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
590
      PADDLE_ENFORCE_CUDA_SUCCESS(
591 592 593 594 595 596 597
          platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
      if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
        LOG(ERROR) << "Provided epsilon is smaller than "
                   << "CUDNN_BN_MIN_EPSILON. Setting it to "
                   << "CUDNN_BN_MIN_EPSILON instead.";
      }
      epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
598
#if CUDNN_VERSION_MIN(7, 0, 0)
W
Wu Yi 已提交
599 600 601 602 603
      if (FLAGS_cudnn_batchnorm_spatial_persistent) {
        mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
      } else {
        mode_ = CUDNN_BATCHNORM_SPATIAL;
      }
604
#else
605
      mode_ = CUDNN_BATCHNORM_SPATIAL;
606
#endif
607

608
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
609 610
          data_desc_, CudnnDataType<T>::type,
          x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
611 612 613
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnDeriveBNTensorDescriptor(bn_param_desc_,
                                                           data_desc_, mode_));
614 615 616

      const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
      const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
L
lvmengsi 已提交
617
      const auto *saved_mean_data =
618
          saved_mean->template data<BatchNormParamType<T>>();
L
lvmengsi 已提交
619
      const auto *saved_var_data =
620 621
          saved_var->template data<BatchNormParamType<T>>();

K
Kaipeng Deng 已提交
622 623 624 625 626 627 628 629
      if (is_inplace) {
        inplace_functor(compute_format, transformed_x.data<T>(),
                        scale->template data<BatchNormParamType<T>>(),
                        bias->template data<BatchNormParamType<T>>(),
                        saved_mean_data, saved_var_data, epsilon, C, H * W * D,
                        num, transformed_x.data<T>(), grid2, block, stream);
      }

L
lvmengsi 已提交
630
      if (d_scale && d_bias) {
631 632 633 634 635 636 637 638 639
        bool called = false;
#if CUDNN_VERSION_MIN(7, 4, 1)
        if (compute_format == DataLayout::kNHWC) {
          called = true;
          size_t workspace_size = 0;
          void *workspace_ptr = nullptr;
          Tensor workspace_tensor;
          auto reserve_space_size = reserve_space->memory_size();
          // --------------- cudnn batchnorm workspace ---------------
640 641 642 643 644 645 646 647 648 649 650 651 652 653
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::
                  cudnnGetBatchNormalizationBackwardExWorkspaceSize(
                      /*handle=*/dev_ctx.cudnn_handle(),
                      /*mode=*/mode_,
                      /*bnIps=*/CUDNN_BATCHNORM_OPS_BN,
                      /*xDesc=*/data_desc_,
                      /*yDesc=*/data_desc_,
                      /*dyDesc=*/data_desc_,
                      /*dzDesc=*/nullptr,
                      /*dxDesc=*/data_desc_,
                      /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
                      /*activationDesc=*/nullptr,
                      /*sizeInBytes=*/&workspace_size));
654 655 656 657

          workspace_ptr = workspace_tensor.mutable_data(
              ctx.GetPlace(), transformed_x.type(), workspace_size);

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::cudnnBatchNormalizationBackwardEx(
                  /*handle=*/dev_ctx.cudnn_handle(),
                  /*mode=*/mode_,
                  /*bnOps=*/CUDNN_BATCHNORM_OPS_BN,
                  /*alphaDataDiff=*/CudnnDataType<T>::kOne(),
                  /*betaDataDiff=*/CudnnDataType<T>::kZero(),
                  /*alphaParamDiff=*/CudnnDataType<T>::kOne(),
                  /*betaParamDiff=*/CudnnDataType<T>::kZero(),
                  /*xDesc=*/data_desc_,
                  /*xData=*/transformed_x.template data<T>(),
                  /*yDesc=*/nullptr,
                  /*yData=*/nullptr,
                  /*dyDesc=*/data_desc_,
                  /*dyData=*/transformed_d_y.template data<T>(),
                  /*dzDesc=*/nullptr,
                  /*dzData=*/nullptr,
                  /*dxDesc=*/data_desc_,
                  /*dxData=*/transformed_d_x.template mutable_data<T>(
677
                      ctx.GetPlace()),
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
                  /*dBnScaleBiasDesc=*/bn_param_desc_,
                  /*bnScaleData=*/scale->template data<BatchNormParamType<T>>(),
                  /*bnBiasData=*/nullptr,
                  /*dBnScaleData=*/d_scale
                      ->template mutable_data<BatchNormParamType<T>>(
                          ctx.GetPlace()),
                  /*dBnBiasData=*/d_bias
                      ->template mutable_data<BatchNormParamType<T>>(
                          ctx.GetPlace()),
                  /*epsilon=*/epsilon,
                  /*savedMean=*/saved_mean_data,
                  /*savedInvVariance=*/saved_var_data,
                  /*activationDesc=*/nullptr,
                  /*workspace=*/workspace_ptr,
                  /*workSpaceSizeInBytes=*/workspace_size,
                  /*reserveSpace=*/const_cast<T *>(
                      reserve_space->template data<T>()),
                  /*reserveSpaceSizeInBytes=*/reserve_space_size));
696 697 698
        }
#endif
        if (!called) {
699 700 701 702 703 704 705 706 707 708 709 710 711 712
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::cudnnBatchNormalizationBackward(
                  dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
                  CudnnDataType<T>::kZero(), data_desc_,
                  transformed_x.template data<T>(), data_desc_,
                  transformed_d_y.template data<T>(), data_desc_,
                  transformed_d_x.template mutable_data<T>(ctx.GetPlace()),
                  bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
                  d_scale->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  d_bias->template mutable_data<BatchNormParamType<T>>(
                      ctx.GetPlace()),
                  epsilon, saved_mean_data, saved_var_data));
713 714 715 716 717 718 719 720
        }

        if (data_layout == DataLayout::kNHWC &&
            compute_format == DataLayout::kNCHW) {
          VLOG(3) << "Transform batchnorm output from NCHW to NHWC";
          TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
              ctx, &transformed_d_x, d_x);
        }
L
lvmengsi 已提交
721
      } else {
722
        if (compute_format == DataLayout::kNCHW) {
L
lvmengsi 已提交
723 724 725 726 727 728 729 730 731
          if (d_x) {
            BNBackwardData<T, block, framework::DataLayout::kNCHW><<<
                grid2, block, 0, dev_ctx.stream()>>>(
                d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
                saved_mean_data, x->data<T>(), saved_var_data, C, N, H * W * D,
                d_x->data<T>());
          }
        } else {
          if (d_x) {
L
Lv Mengsi 已提交
732
            BNBackwardData<T, block, framework::DataLayout::kNHWC><<<
L
lvmengsi 已提交
733 734 735 736 737 738 739
                grid2, block, 0, dev_ctx.stream()>>>(
                d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
                saved_mean_data, x->data<T>(), saved_var_data, C, N, H * W * D,
                d_x->data<T>());
          }
        }
      }
740 741

      // clean when exit.
742
      PADDLE_ENFORCE_CUDA_SUCCESS(
743
          platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
744
      PADDLE_ENFORCE_CUDA_SUCCESS(
745 746 747 748 749 750 751 752 753 754
          platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
    } else {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_var = ctx.Input<Tensor>("Variance");

      const auto *running_mean_data =
          running_mean->template data<BatchNormParamType<T>>();
      const auto *running_var_data =
          running_var->template data<BatchNormParamType<T>>();

K
Kaipeng Deng 已提交
755 756 757 758 759 760 761 762 763
      if (is_inplace) {
        auto px = *x;
        inplace_functor(data_layout, px.mutable_data<T>(ctx.GetPlace()),
                        scale->template data<BatchNormParamType<T>>(),
                        bias->template data<BatchNormParamType<T>>(),
                        running_mean_data, running_var_data, epsilon, C,
                        H * W * D, num, x->data<T>(), grid2, block, stream);
      }

764
      if (compute_format == DataLayout::kNCHW) {
765
        if (d_x) {
K
Kaipeng Deng 已提交
766 767
          KeBNBackwardData<
              T, framework::DataLayout::kNCHW><<<grid1, block, 0, stream>>>(
768 769 770 771
              d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
              running_var_data, epsilon, C, H * W, num, d_x->data<T>());
        }
        if (d_scale && d_bias) {
K
Kaipeng Deng 已提交
772 773 774
          KeBNBackwardScaleBias<
              T, block,
              framework::DataLayout::kNCHW><<<grid2, block, 0, stream>>>(
775
              d_y->data<T>(), x->data<T>(), running_mean_data, running_var_data,
Q
qingqing01 已提交
776
              epsilon, N, C, H * W * D, d_scale->data<BatchNormParamType<T>>(),
777 778 779 780
              d_bias->data<BatchNormParamType<T>>());
        }
      } else {
        if (d_x) {
K
Kaipeng Deng 已提交
781 782
          KeBNBackwardData<
              T, framework::DataLayout::kNHWC><<<grid1, block, 0, stream>>>(
783 784 785 786
              d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
              running_var_data, epsilon, C, H * W, num, d_x->data<T>());
        }
        if (d_scale && d_bias) {
K
Kaipeng Deng 已提交
787 788 789
          KeBNBackwardScaleBias<
              T, block,
              framework::DataLayout::kNHWC><<<grid2, block, 0, stream>>>(
790
              d_y->data<T>(), x->data<T>(), running_mean_data, running_var_data,
Q
qingqing01 已提交
791
              epsilon, N, C, H * W * D, d_scale->data<BatchNormParamType<T>>(),
792 793 794 795
              d_bias->data<BatchNormParamType<T>>());
        }
      }
    }
Q
Qiao Longfei 已提交
796 797 798 799 800 801 802
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
803
namespace plat = paddle::platform;
Q
QI JUN 已提交
804
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
805
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
D
dzhwinter 已提交
806
    ops::BatchNormKernel<plat::CUDADeviceContext, double>,
K
Kexin Zhao 已提交
807
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
808
REGISTER_OP_CUDA_KERNEL(
D
dzhwinter 已提交
809
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>,
C
chengduo 已提交
810 811
    ops::BatchNormGradKernel<plat::CUDADeviceContext, double>,
    ops::BatchNormGradKernel<plat::CUDADeviceContext, plat::float16>);