Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
6b475981
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6b475981
编写于
12月 22, 2017
作者:
Q
QI JUN
提交者:
GitHub
12月 22, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add data layout (#6832)
* add data layout * fix ci
上级
ad6d6e9c
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
92 addition
and
67 deletion
+92
-67
paddle/framework/data_layout.h
paddle/framework/data_layout.h
+37
-0
paddle/operators/batch_norm_op.cc
paddle/operators/batch_norm_op.cc
+33
-31
paddle/operators/batch_norm_op.cu.cc
paddle/operators/batch_norm_op.cu.cc
+18
-17
paddle/operators/batch_norm_op.h
paddle/operators/batch_norm_op.h
+0
-15
python/paddle/v2/fluid/tests/test_batch_norm_op.py
python/paddle/v2/fluid/tests/test_batch_norm_op.py
+4
-4
未找到文件。
paddle/framework/data_layout.h
0 → 100644
浏览文件 @
6b475981
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace
paddle
{
namespace
framework
{
enum
DataLayout
{
kNHWC
=
0
,
kNCHW
=
1
,
kAnyLayout
=
2
,
};
inline
DataLayout
StringToDataLayout
(
const
std
::
string
&
str
)
{
if
(
str
==
"NHWC"
||
str
==
"nhwc"
)
{
return
DataLayout
::
kNHWC
;
}
else
if
(
str
==
"NCHW"
||
str
==
"nchw"
)
{
return
DataLayout
::
kNCHW
;
}
else
{
PADDLE_THROW
(
"Unknown storage order string: %s"
,
str
);
}
}
}
// namespace framework
}
// namespace paddle
paddle/operators/batch_norm_op.cc
浏览文件 @
6b475981
...
...
@@ -13,12 +13,14 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/batch_norm_op.h"
#include "paddle/framework/data_layout.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
using
EigenArrayMap
=
...
...
@@ -60,15 +62,15 @@ class BatchNormOp : public framework::OperatorWithKernel {
"Variance and VarianceOut should share the same memory"
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
TensorFormat
tensor_format
=
StringToTensorFormat
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"tensor_forma
t"
));
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"data_layou
t"
));
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
"Input X must have 2 to 5 dimensions."
);
const
int
C
=
(
tensor_format
==
TensorFormat
::
NCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
(
data_layout
==
DataLayout
::
k
NCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
).
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
C
);
...
...
@@ -90,7 +92,7 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
bool
>
(
"is_test"
,
""
).
SetDefault
(
false
);
AddAttr
<
float
>
(
"momentum"
,
""
).
SetDefault
(
0.9
);
AddAttr
<
float
>
(
"epsilon"
,
""
).
SetDefault
(
1e-5
);
AddAttr
<
std
::
string
>
(
"
tensor_forma
t"
,
""
).
SetDefault
(
"NCHW"
);
AddAttr
<
std
::
string
>
(
"
data_layou
t"
,
""
).
SetDefault
(
"NCHW"
);
AddInput
(
"X"
,
"The input tensor"
);
AddInput
(
"Scale"
,
"Scale is a 1-dimensional tensor of size C "
...
...
@@ -141,9 +143,9 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
std
::
string
tensor_format_str
=
ctx
.
Attr
<
std
::
string
>
(
"tensor_format"
);
const
TensorFormat
tensor_format
=
StringToTensorFormat
(
tensor_forma
t_str
);
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_layou
t_str
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
...
...
@@ -151,8 +153,8 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
"The Input dim size should be between 2 and 5"
);
const
int
N
=
x_dims
[
0
];
const
int
C
=
(
tensor_format
==
TensorFormat
::
NCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
(
data_layout
==
DataLayout
::
k
NCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
sample_size
=
x
->
numel
()
/
N
/
C
;
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
...
...
@@ -177,8 +179,8 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
saved_mean_e
.
setZero
();
saved_variance_e
.
setZero
();
switch
(
tensor_forma
t
)
{
case
TensorFormat
::
NCHW
:
{
switch
(
data_layou
t
)
{
case
DataLayout
::
k
NCHW
:
{
ConstEigenArrayMap
<
T
>
x_arr
(
x
->
data
<
T
>
(),
sample_size
,
N
*
C
);
for
(
int
nc
=
0
;
nc
<
N
*
C
;
++
nc
)
{
saved_mean_e
(
nc
%
C
)
+=
x_arr
.
col
(
nc
).
sum
();
...
...
@@ -191,7 +193,7 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
saved_variance_e
/=
N
*
sample_size
;
break
;
}
case
TensorFormat
::
NHWC
:
{
case
DataLayout
::
k
NHWC
:
{
ConstEigenArrayMap
<
T
>
x_arr
(
x
->
data
<
T
>
(),
C
,
N
*
sample_size
);
for
(
int
i
=
0
;
i
<
N
*
sample_size
;
++
i
)
{
saved_mean_e
+=
x_arr
.
col
(
i
);
...
...
@@ -205,7 +207,7 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
break
;
}
default:
PADDLE_THROW
(
"Unknown storage order: %s"
,
tensor_forma
t_str
);
PADDLE_THROW
(
"Unknown storage order: %s"
,
data_layou
t_str
);
}
EigenVectorArrayMap
<
T
>
running_mean_arr
(
...
...
@@ -247,8 +249,8 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>
new_bias
=
bias_arr
-
mean_arr
*
inv_std
*
scale_arr
;
switch
(
tensor_forma
t
)
{
case
TensorFormat
::
NCHW
:
{
switch
(
data_layou
t
)
{
case
DataLayout
::
k
NCHW
:
{
EigenArrayMap
<
T
>
y_arr
(
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
sample_size
,
N
*
C
);
ConstEigenArrayMap
<
T
>
x_arr
(
x
->
data
<
T
>
(),
sample_size
,
N
*
C
);
...
...
@@ -257,7 +259,7 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
}
break
;
}
case
TensorFormat
::
NHWC
:
{
case
DataLayout
::
k
NHWC
:
{
EigenArrayMap
<
T
>
(
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
,
N
*
sample_size
)
=
(
ConstEigenArrayMap
<
T
>
(
x
->
data
<
T
>
(),
C
,
N
*
sample_size
).
colwise
()
*
...
...
@@ -267,7 +269,7 @@ class BatchNormKernel<platform::CPUDeviceContext, T>
break
;
}
default:
PADDLE_THROW
(
"Unknown storage order: %d"
,
tensor_forma
t
);
PADDLE_THROW
(
"Unknown storage order: %d"
,
data_layou
t
);
}
}
};
...
...
@@ -290,11 +292,11 @@ class BatchNormGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)),
""
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
TensorFormat
tensor_format
=
StringToTensorFormat
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"tensor_forma
t"
));
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"data_layou
t"
));
const
int
C
=
(
tensor_format
==
TensorFormat
::
NCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
(
data_layout
==
DataLayout
::
k
NCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Scale"
),
{
C
});
...
...
@@ -333,9 +335,9 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
const
auto
*
saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
// SavedVariance have been reverted in forward operator
const
auto
*
saved_inv_variance
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
const
std
::
string
tensor_format_str
=
ctx
.
Attr
<
std
::
string
>
(
"tensor_format"
);
const
TensorFormat
tensor_format
=
StringToTensorFormat
(
tensor_forma
t_str
);
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_layou
t_str
);
// Get the size for each dimension.
// NCHW [batch_size, in_channels, in_height, in_width]
...
...
@@ -344,8 +346,8 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
"The Input dim size should be between 2 and 5"
);
const
int
N
=
x_dims
[
0
];
const
int
C
=
(
tensor_format
==
TensorFormat
::
NCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
(
data_layout
==
DataLayout
::
k
NCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
sample_size
=
x
->
numel
()
/
N
/
C
;
ConstEigenVectorArrayMap
<
T
>
scale_arr
(
scale
->
data
<
T
>
(),
C
);
...
...
@@ -376,8 +378,8 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
const
auto
scale_inv_var_nhw
=
scale_arr
*
inv_var_arr
/
(
N
*
sample_size
);
switch
(
tensor_forma
t
)
{
case
TensorFormat
::
NCHW
:
{
switch
(
data_layou
t
)
{
case
DataLayout
::
k
NCHW
:
{
ConstEigenArrayMap
<
T
>
x_arr
(
x
->
data
<
T
>
(),
sample_size
,
N
*
C
);
ConstEigenArrayMap
<
T
>
d_y_arr
(
d_y
->
data
<
T
>
(),
sample_size
,
N
*
C
);
EigenArrayMap
<
T
>
d_x_arr
(
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
...
...
@@ -400,7 +402,7 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
}
break
;
}
case
TensorFormat
::
NHWC
:
{
case
DataLayout
::
k
NHWC
:
{
ConstEigenArrayMap
<
T
>
x_arr
(
x
->
data
<
T
>
(),
C
,
N
*
sample_size
);
ConstEigenArrayMap
<
T
>
d_y_arr
(
d_y
->
data
<
T
>
(),
C
,
N
*
sample_size
);
EigenArrayMap
<
T
>
d_x_arr
(
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
C
,
...
...
@@ -425,7 +427,7 @@ class BatchNormGradKernel<platform::CPUDeviceContext, T>
break
;
}
default:
PADDLE_THROW
(
"Unknown storage order: %s"
,
tensor_forma
t_str
);
PADDLE_THROW
(
"Unknown storage order: %s"
,
data_layou
t_str
);
}
}
};
...
...
paddle/operators/batch_norm_op.cu.cc
浏览文件 @
6b475981
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/batch_norm_op.h"
#include "paddle/framework/data_layout.h"
#include <cfloat>
#include "paddle/operators/math/math_function.h"
...
...
@@ -22,12 +23,12 @@ namespace paddle {
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
using
CudnnDataType
=
platform
::
CudnnDataType
<
T
>
;
void
ExtractNCWHD
(
const
framework
::
DDim
&
dims
,
const
TensorFormat
&
tensor_format
,
int
*
N
,
int
*
C
,
int
*
H
,
int
*
W
,
int
*
D
)
{
void
ExtractNCWHD
(
const
framework
::
DDim
&
dims
,
const
DataLayout
&
data_layout
,
int
*
N
,
int
*
C
,
int
*
H
,
int
*
W
,
int
*
D
)
{
*
N
=
dims
[
0
];
if
(
dims
.
size
()
==
2
)
{
*
C
=
dims
[
1
];
...
...
@@ -35,13 +36,13 @@ void ExtractNCWHD(const framework::DDim &dims,
*
W
=
1
;
*
D
=
1
;
}
else
{
*
C
=
tensor_format
==
TensorFormat
::
NCHW
?
dims
[
1
]
:
dims
[
dims
.
size
()
-
1
];
*
H
=
tensor_format
==
TensorFormat
::
NCHW
?
dims
[
2
]
:
dims
[
1
];
*
C
=
data_layout
==
DataLayout
::
k
NCHW
?
dims
[
1
]
:
dims
[
dims
.
size
()
-
1
];
*
H
=
data_layout
==
DataLayout
::
k
NCHW
?
dims
[
2
]
:
dims
[
1
];
*
W
=
dims
.
size
()
>
3
?
(
tensor_format
==
TensorFormat
::
NCHW
?
dims
[
3
]
:
dims
[
2
])
?
(
data_layout
==
DataLayout
::
k
NCHW
?
dims
[
3
]
:
dims
[
2
])
:
1
;
*
D
=
dims
.
size
()
>
4
?
(
tensor_format
==
TensorFormat
::
NCHW
?
dims
[
4
]
:
dims
[
3
])
?
(
data_layout
==
DataLayout
::
k
NCHW
?
dims
[
4
]
:
dims
[
3
])
:
1
;
}
}
...
...
@@ -56,9 +57,9 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
double
epsilon
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
const
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
std
::
string
tensor_format_str
=
ctx
.
Attr
<
std
::
string
>
(
"tensor_format"
);
const
TensorFormat
tensor_format
=
StringToTensorFormat
(
tensor_forma
t_str
);
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_layou
t_str
);
// Get the size for each dimension.
// NCHW [batch_size, in_channels, in_height, in_width]
...
...
@@ -67,7 +68,7 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
"The Input dim size should be between 2 and 5"
);
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
tensor_forma
t
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
ExtractNCWHD
(
x_dims
,
data_layou
t
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
// ------------------- cudnn descriptors ---------------------
cudnnTensorDescriptor_t
data_desc_
;
...
...
@@ -93,7 +94,7 @@ class BatchNormKernel<platform::CUDADeviceContext, T>
VLOG
(
1
)
<<
"Setting descriptors."
;
std
::
vector
<
int
>
dims
;
std
::
vector
<
int
>
strides
;
if
(
tensor_format
==
TensorFormat
::
NCHW
)
{
if
(
data_layout
==
DataLayout
::
k
NCHW
)
{
dims
=
{
N
,
C
,
H
,
W
,
D
};
strides
=
{
C
*
H
*
W
*
D
,
H
*
W
*
D
,
W
*
D
,
D
,
1
};
}
else
{
...
...
@@ -180,9 +181,9 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
"It must use GPUPlace."
);
double
epsilon
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
const
std
::
string
tensor_format_str
=
ctx
.
Attr
<
std
::
string
>
(
"tensor_format"
);
const
TensorFormat
tensor_format
=
StringToTensorFormat
(
tensor_forma
t_str
);
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
data_layout
=
framework
::
StringToDataLayout
(
data_layou
t_str
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
...
...
@@ -192,7 +193,7 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
PADDLE_ENFORCE
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
"The Input dim size should be between 2 and 5"
);
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
tensor_forma
t
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
ExtractNCWHD
(
x_dims
,
data_layou
t
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
PADDLE_ENFORCE_EQ
(
scale
->
dims
().
size
(),
1UL
);
PADDLE_ENFORCE_EQ
(
scale
->
dims
()[
0
],
C
);
...
...
@@ -219,7 +220,7 @@ class BatchNormGradKernel<platform::CUDADeviceContext, T>
std
::
vector
<
int
>
dims
;
std
::
vector
<
int
>
strides
;
if
(
tensor_format
==
TensorFormat
::
NCHW
)
{
if
(
data_layout
==
DataLayout
::
k
NCHW
)
{
dims
=
{
N
,
C
,
H
,
W
,
D
};
strides
=
{
C
*
H
*
W
*
D
,
H
*
W
*
D
,
W
*
D
,
D
,
1
};
}
else
{
...
...
paddle/operators/batch_norm_op.h
浏览文件 @
6b475981
...
...
@@ -19,21 +19,6 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
enum
TensorFormat
{
NHWC
=
0
,
NCHW
=
1
,
};
inline
TensorFormat
StringToTensorFormat
(
const
std
::
string
&
str
)
{
if
(
str
==
"NHWC"
||
str
==
"nhwc"
)
{
return
TensorFormat
::
NHWC
;
}
else
if
(
str
==
"NCHW"
||
str
==
"nchw"
)
{
return
TensorFormat
::
NCHW
;
}
else
{
PADDLE_THROW
(
"Unknown storage order string: %s"
,
str
);
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
BatchNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
python/paddle/v2/fluid/tests/test_batch_norm_op.py
浏览文件 @
6b475981
...
...
@@ -208,7 +208,7 @@ class TestBatchNormOp(OpTest):
print
'python: NHWC, NCHW, backward checking passed'
def
test_forward_backward
(
self
):
def
test_with_place
(
place
,
tensor_forma
t
,
shape
):
def
test_with_place
(
place
,
data_layou
t
,
shape
):
# attr
epsilon
=
0.00001
momentum
=
0.9
...
...
@@ -292,7 +292,7 @@ class TestBatchNormOp(OpTest):
SavedVariance
=
"saved_variance"
,
# attrs
is_test
=
False
,
tensor_format
=
tensor_forma
t
,
data_layout
=
data_layou
t
,
momentum
=
momentum
,
epsilon
=
epsilon
)
...
...
@@ -311,7 +311,7 @@ class TestBatchNormOp(OpTest):
atol
=
1e-4
self
.
__assert_close
(
variance_out_tensor
,
variance_out
,
"variance_out"
,
atol
)
print
"op test forward passed: "
,
str
(
place
),
tensor_forma
t
print
"op test forward passed: "
,
str
(
place
),
data_layou
t
# run backward
batch_norm_op_grad
=
get_backward_op
(
scope
,
batch_norm_op
,
set
())
...
...
@@ -336,7 +336,7 @@ class TestBatchNormOp(OpTest):
self
.
__assert_close
(
x_grad_tensor
,
x_grad_ref
,
"x_grad"
)
self
.
__assert_close
(
scale_grad_tensor
,
scale_grad_ref
,
"scale_grad"
)
self
.
__assert_close
(
bias_grad_tensor
,
bias_grad_ref
,
"bias_grad"
)
print
"op test backward passed: "
,
str
(
place
),
tensor_forma
t
print
"op test backward passed: "
,
str
(
place
),
data_layou
t
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compile_gpu
()
and
core
.
op_support_gpu
(
"batch_norm"
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录