engine.py 25.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import logging
from collections import defaultdict

import paddle
20 21
import paddle.distributed.auto_parallel as auto

22 23
from paddle import fluid
from paddle.io import Dataset
24
from paddle.metric import Metric
25
from paddle.static import InputSpec
26
from paddle.fluid import core
27
from paddle.fluid import program_guard
28 29
from paddle.fluid.layers.utils import flatten
from paddle.fluid.executor import global_scope
30
from paddle.fluid.backward import append_backward
31 32 33 34
from paddle.fluid.framework import Operator
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.distributed.utils import get_logger
35
from paddle.distributed.passes import new_pass, PassContext
36 37

from .mapper import mapping
38
from .cluster import Cluster
39
from .reshard import Resharder
40
from .planner import Planner
41 42 43 44 45 46 47 48 49
from .completion import Completer
from .partitioner import Partitioner
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
from .process_group import get_all_process_groups, get_world_process_group
from .dist_context import DistributedContext, get_default_distributed_context
50 51 52 53 54

paddle.enable_static()


class Engine:
55 56 57 58 59 60
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
                 strategy=None):
61
        self.model = model
62 63
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
64 65
        self.cluster = cluster
        self.strategy = strategy
66

67
        self._executor = None
68 69 70 71 72 73
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
        self._logger = get_logger(logging.INFO)

        self._default_strategy = None
74 75
        self._orig_main_prog = fluid.default_main_program()
        self._orig_startup_prog = fluid.default_startup_program()
76
        self._orig_dist_context = get_default_distributed_context()
77 78
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
79 80
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
81 82
        self._dist_contexts = {}
        self._pass_contexts = {}
83 84
        self._feed_vars = {}
        self._fetch_vars = {}
85 86 87 88 89

    def prepare(self,
                optimizer=None,
                loss=None,
                metrics=None,
90
                mode='train',
91
                all_ranks=False):
92 93 94 95
        self._optimizer = optimizer
        # TODO: check loss type
        self._loss = loss
        self._metrics = to_list(metrics)
96 97 98 99 100
        self._mode = mode
        self._build(mode)  # build forward program
        self._plan(mode)  # completion & planner
        self._parallel(mode, all_ranks)  # parallel
        self._initialize(mode)  # init comm and startup program
101

102 103
    def _build(self, mode):
        serial_main_prog = self._serial_main_progs.get(mode, None)
104 105 106
        if serial_main_prog is not None:
            return

107 108
        losses = []
        metrics = []
109 110 111
        serial_main_prog = self._orig_main_prog.clone()
        serial_startup_prog = self._orig_startup_prog.clone()
        with fluid.program_guard(serial_main_prog, serial_startup_prog):
112 113 114 115
            inputs_spec = self.inputs_spec
            labels_spec = self.labels_spec if self.labels_spec else []
            inputs = [s._create_feed_layer() for s in inputs_spec]
            labels = [s._create_feed_layer() for s in labels_spec]
116
            outputs = to_list(self.model(*inputs))
117 118 119
            if mode != "predict" and self._loss:
                losses = to_list(self._loss(*(outputs + labels)))

120 121 122 123 124 125
        default_ctx = get_default_distributed_context()
        if not default_ctx.is_annotation or self._default_strategy:
            inputs = [self._set_data_parallel(var) for var in inputs]
            labels = [self._set_data_parallel(var) for var in labels]

        # print(serial_main_prog)
126 127 128
        self._feed_vars[mode] = {"inputs": inputs, "labels": labels}

        self._fetch_vars[mode] = {
129
            "outputs": flatten(outputs),
130 131 132 133 134 135 136 137 138 139 140 141
            "loss": losses,
            "metrics": metrics
        }

        self._serial_main_progs[mode] = serial_main_prog
        self._serial_startup_progs[mode] = serial_startup_prog
        self._dist_contexts[mode] = DistributedContext(
            serial_main_prog, serial_startup_prog, self._dist_main_progs[mode],
            self._dist_startup_progs[mode])
        self._pass_contexts[mode] = PassContext()

    def _plan(self, mode):
142 143 144 145 146 147

        # NOTE: [HighOrderGrad]. There are grad ops in forward phase, and it need
        # dependency of backward-forward ops in forward completition.
        defualt_ctx = get_default_distributed_context()
        self._dist_contexts[mode]._dist_op_context = defualt_ctx.dist_op_context

148
        # Complete the distributed annotation
149 150
        serial_main_prog = self._serial_main_progs[mode]
        self._completer = Completer(self._dist_contexts[mode])
151 152
        self._completer.complete_forward_annotation(serial_main_prog)
        # TODO: add auto planner process
J
JZ-LIANG 已提交
153
        # parse forward sub block
154
        self._dist_contexts[mode].block_state.parse_forward_blocks(
J
JZ-LIANG 已提交
155
            serial_main_prog)
156

157 158 159 160 161 162 163 164 165 166
    def _parallel(self, mode, all_ranks=False):
        if not all_ranks:
            self._parallel_program(mode, self._cur_rank)
        else:
            world_process_group = get_world_process_group()
            all_ranks = world_process_group.ranks
            for rank in all_ranks:
                self._parallel_program(mode, rank)

    def _initialize(self, mode):
167 168 169 170 171 172 173 174
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
                process_group.instantiate()
175 176 177 178 179 180 181

        # initialize
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
        if self._executor is None:
            self._executor = paddle.static.Executor(self._place)
182 183 184 185 186 187 188 189 190 191
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
192 193 194 195 196 197

    def _parallel_program(self, mode, rank):
        serial_main_program = self._serial_main_progs[mode]
        serial_startup_program = self._serial_startup_progs[mode]
        dist_context = self._dist_contexts[mode]
        if mode == "train" and self._optimizer:
198
            # Generate backward
199
            serial_loss = self._fetch_vars[mode]["loss"][0]
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
            params_grads = self._generate_backward(
                serial_main_program, serial_startup_program, serial_loss)
            # Apply pre optimization passes
            self._apply_pre_optimization(serial_main_program,
                                         serial_startup_program, serial_loss,
                                         params_grads)
            # Do logical partition
            partitioner = Partitioner(dist_context, rank)
            dist_main_prog, dist_startup_prog, dist_params_grads = partitioner.partition(
                serial_main_program, serial_startup_program, params_grads)
            # Generate optimizer
            self._generate_optimizer(dist_main_prog, dist_startup_prog,
                                     dist_params_grads)
            # Do reshard process
            set_grad_var_shape(dist_main_prog, dist_context)
            make_data_unshard(dist_main_prog, dist_startup_prog, dist_context)
216 217 218
            resharder = Resharder(dist_main_prog, dist_startup_prog, rank,
                                  dist_context, dist_params_grads)
            resharder.reshard()
219 220 221
            # Apply post optimization passes
            self._apply_post_optimization(dist_main_prog, dist_startup_prog,
                                          rank, dist_params_grads)
222
        else:
223 224 225
            # Apply pre optimization passes
            self._apply_pre_optimization(serial_main_program,
                                         serial_startup_program, None, None)
226 227 228 229 230 231
            # Do logical partition
            partitioner = Partitioner(dist_context, rank)
            dist_main_prog, dist_startup_prog, dist_params_grads = partitioner.partition(
                serial_main_program, serial_startup_program, [])
            # Do reshard process
            make_data_unshard(dist_main_prog, dist_startup_prog, dist_context)
232 233 234
            resharder = Resharder(dist_main_prog, dist_startup_prog, rank,
                                  dist_context, [], 1)
            resharder.reshard()
235 236 237 238 239 240 241 242

        # clone program for test
        if mode != 'train':
            dist_main_prog = dist_main_prog.clone(for_test=True)
            dist_startup_prog = dist_startup_prog.clone(for_test=True)

        self._dist_main_progs[mode][rank] = dist_main_prog
        self._dist_startup_progs[mode][rank] = dist_startup_prog
243 244 245 246 247 248 249

    def _generate_backward(self, main_program, startup_program, loss):
        with program_guard(main_program, startup_program):
            params_grads = append_backward(
                loss,
                distop_context=self._dist_contexts[self.mode].dist_op_context)
        self._completer.complete_backward_annotation(main_program)
J
JZ-LIANG 已提交
250 251
        self._dist_contexts[self.mode].block_state.parse_backward_blocks(
            main_program)
252 253 254 255
        return params_grads

    def _generate_optimizer(self, main_program, startup_program, params_grads):
        with program_guard(main_program, startup_program):
256
            optimizer_ops = copy.deepcopy(self._optimizer).apply_gradients(
257 258 259 260 261 262
                params_grads)
        self._completer.complete_update_annotation(main_program)
        return optimizer_ops

    def _apply_pre_optimization(self, main_program, startup_program, loss,
                                params_grads):
263

264 265 266 267 268 269
        # apply amp pass
        if self.strategy.amp:
            config = copy.deepcopy(self.strategy.amp_configs)
            config["dist_context"] = self._dist_contexts[self.mode]
            config["params_grads"] = params_grads
            config["loss"] = loss
270 271 272 273 274
            config["input_data"] = self._feed_vars[self.mode][
                "inputs"] + self._feed_vars[self.mode]["labels"]
            if config["use_pure_fp16"]:
                config["base_opt"] = self._optimizer
                auto_parallel_fp16_pass = new_pass("auto_parallel_fp16", config)
275 276 277
                auto_parallel_fp16_pass.apply([main_program],
                                              [startup_program],
                                              self._pass_contexts[self.mode])
278 279 280
            else:
                auto_parallel_amp_pass = new_pass("auto_parallel_amp", config)
                auto_parallel_amp_pass.apply([main_program], [startup_program],
281
                                             self._pass_contexts[self.mode])
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

        # apply recompute pass
        if self.strategy.recompute:
            config = copy.deepcopy(self.strategy.recompute_configs)
            config["dist_context"] = self._dist_contexts[self.mode]
            config["no_grad_set"] = None
            config["loss"] = loss
            auto_parallel_recompute_pass = new_pass("auto_parallel_recompute",
                                                    config)
            auto_parallel_recompute_pass.apply([main_program],
                                               [startup_program],
                                               self._pass_contexts[self.mode])

    def _apply_post_optimization(self, main_program, startup_program, rank,
                                 params_grads):
        if self.strategy.sharding:
            config = copy.deepcopy(self.strategy.sharding_configs)
            config["dist_context"] = self._dist_contexts[self.mode]
            config["params_grads"] = params_grads
            config["global_rank"] = rank
            auto_parallel_sharding_pass = new_pass("auto_parallel_sharding",
                                                   config)
            auto_parallel_sharding_pass.apply([main_program],
                                              [startup_program],
                                              self._pass_contexts[self.mode])

        if self.strategy.gradient_merge:
            config = copy.deepcopy(self.strategy.gradient_merge_configs)
            config["dist_context"] = self._dist_contexts[self.mode]
            config["params_grads"] = params_grads
            auto_parallel_gradient_merge_pass = new_pass(
                "auto_parallel_gradient_merge_pass", config)
            auto_parallel_gradient_merge_pass.apply(
                [main_program], [startup_program],
                self._pass_contexts[self.mode])

318 319 320 321 322 323 324 325
    def fit(self,
            train_data,
            batch_size=1,
            epochs=1,
            steps_per_epoch=None,
            use_program_cache=False,
            return_numpy=True,
            sample_generator=True):
326 327 328
        # TODO: callbacks
        # TODO: evaluate after training
        self.mode = 'train'
329 330 331
        assert self.mode in self._dist_main_progs, "train model is not ready, please call `engine.prepare(mode='train')` first."
        train_dataloader = self._create_dataloader(
            train_data, batch_size, epochs, steps_per_epoch, sample_generator)
332 333

        outputs = []
334 335
        for epoch in range(epochs):
            for step, data in enumerate(train_dataloader):
336 337
                logs, loss = self._train_step(data, use_program_cache,
                                              return_numpy)
338
                outputs.append(loss)
339 340 341 342
                train_logs = {
                    "train_" + name: val
                    for name, val in logs.items()
                }
343
                self._logger.info(train_logs)
344 345
        return outputs

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    def evaluate(self,
                 eval_data,
                 batch_size=1,
                 use_program_cache=False,
                 return_numpy=True,
                 sample_generator=True):
        self.mode = 'eval'
        assert self.mode in self._dist_main_progs, "eval model is not ready, please call `engine.prepare(mode='eval')` first."
        eval_dataloader = self._create_dataloader(
            eval_data, batch_size, sample_generator=sample_generator)

        outputs = []
        for step, data in enumerate(eval_dataloader):
            logs, outs = self._eval_step(data, use_program_cache, return_numpy)
            outputs.append(outs)
            predict_logs = {"eval_" + name: val for name, val in logs.items()}
            self._logger.info(predict_logs)
        return outputs

365 366 367 368
    def predict(self,
                test_data,
                batch_size=1,
                use_program_cache=False,
369 370
                return_numpy=True,
                sample_generator=True):
371
        self.mode = 'predict'
372 373 374
        assert self.mode in self._dist_main_progs, "predict model is not ready, please call `engine.prepare(mode='predict')` first."
        test_dataloader = self._create_dataloader(
            test_data, batch_size, sample_generator=sample_generator)
375 376 377 378 379 380 381 382 383 384 385 386

        outputs = []
        for step, data in enumerate(test_dataloader):
            logs, outs = self._predict_step(data, use_program_cache,
                                            return_numpy)
            outputs.append(outs)
            predict_logs = {
                "predict_" + name: val
                for name, val in logs.items()
            }
            self._logger.info(predict_logs)
        return outputs
387

388
    def _train_step(self, data, use_program_cache=False, return_numpy=True):
389
        logs = {}
390 391 392
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        fetch_var = self._fetch_vars[self.mode]["loss"][0]
        if fetch_var.name not in dist_main_prog.global_block().vars:
393 394
            loss = self._executor.run(dist_main_prog,
                                      use_program_cache=use_program_cache)
395 396
            logs["loss"] = None
        else:
397
            loss = self._executor.run(dist_main_prog,
398 399 400
                                      fetch_list=to_list(fetch_var),
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
401
            logs["loss"] = loss
402 403
        return logs, loss

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    def _eval_step(self, data, use_program_cache=False, return_numpy=True):
        logs = {}
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        fetch_var = self._fetch_vars[self.mode]["loss"][0]

        if fetch_var.name not in dist_main_prog.global_block().vars:
            outs = self._executor.run(dist_main_prog,
                                      use_program_cache=use_program_cache)
            logs["loss"] = outs
        else:
            outs = self._executor.run(dist_main_prog,
                                      fetch_list=fetch_var,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            logs["loss"] = outs
        return logs, outs

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    def _predict_step(self, data, use_program_cache=False, return_numpy=True):
        logs = {}
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        fetch_var = []
        for var in self._fetch_vars[self.mode]["outputs"]:
            if var.name in dist_main_prog.global_block().vars:
                fetch_var.append(var)

        if fetch_var is []:
            outs = self._executor.run(dist_main_prog,
                                      use_program_cache=use_program_cache)
            logs["pred"] = outs
        else:
            outs = self._executor.run(dist_main_prog,
                                      fetch_list=fetch_var,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            logs["pred"] = outs
        return logs, outs
440

441 442 443 444
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
445 446
                           steps_per_epoch=None,
                           sample_generator=True):
447 448
        feed_list = self._feed_vars[self.mode]["inputs"] + self._feed_vars[
            self.mode]["labels"]
449 450 451 452
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
453 454
        serial_main_prog = self._serial_main_progs[self.mode]
        serial_main_block = serial_main_prog.global_block()
455
        op_size = len(dist_main_block.ops)
456 457 458 459
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
460 461 462
        places = paddle.static.cuda_places()
        with fluid.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = NonIterableGeneratorLoader(
463 464 465 466 467 468
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
469
                sample_generator=sample_generator)
470
        new_op_size = len(dist_main_block.ops)
471
        for _ in range(new_op_size - 1, op_size - 1, -1):
472 473 474 475 476 477
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type())
            dist_main_block.ops.insert(0, new_op)
478
            for in_name in new_op.input_arg_names:
479
                if "lod_tensor_blocking_queue" in in_name:
480 481 482 483 484 485 486 487 488
                    continue
                if in_name not in dist_main_block.vars:
                    in_var = serial_main_block._var_recursive(in_name)
                    dist_main_block._clone_variable(in_var, in_var.persistable)
            for out_name in new_op.output_arg_names:
                if out_name not in dist_main_block.vars:
                    out_var = serial_main_block._var_recursive(out_name)
                    dist_main_block._clone_variable(out_var,
                                                    out_var.persistable)
489 490 491 492 493 494 495
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

496 497 498 499 500 501 502 503 504 505 506
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    def _set_data_parallel(self, var):
        if self._nranks == 1:
            self._default_strategy = 'serial'
            auto.shard_tensor(
                var,
                dist_attr={
                    "process_mesh": [0],
                    "dims_mapping": [-1 for _ in range(len(var.shape))]
                })
        else:
            self._default_strategy = 'dp'
            auto.shard_tensor(
                var,
                dist_attr={
                    "process_mesh": list(range(self._nranks)),
                    "dims_mapping":
                    [0] + [-1 for _ in range(len(var.shape) - 1)]
                })

        return var

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
            assert 'train' in self._serial_main_progs, "training model is not ready, please call `engine.prepare(mode='train')` first."
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context)
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog)
553

554 555 556 557
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
558

559 560 561 562
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def metrics(self):
        return self._metrics

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]