engine.py 19.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import logging
from collections import defaultdict

import paddle
from paddle import fluid
from paddle.io import Dataset
22
from paddle.metric import Metric
23
from paddle.static import InputSpec
24
from paddle.fluid import core
25
from paddle.fluid import program_guard
26
from paddle.fluid.backward import append_backward
27 28 29 30 31 32 33
from paddle.fluid.framework import Operator
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.distributed.passes import new_pass, PassContext
from paddle.distributed.utils import get_logger

from .mapper import mapping
34 35
from .cluster import Cluster
from .reshard import reshard
36
from .planner import Planner
37 38 39 40 41 42 43 44 45
from .completion import Completer
from .partitioner import Partitioner
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
from .process_group import get_all_process_groups, get_world_process_group
from .dist_context import DistributedContext, get_default_distributed_context
46 47 48 49 50

paddle.enable_static()


class Engine:
51 52 53 54 55 56
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
                 strategy=None):
57
        self.model = model
58 59
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
60 61
        self.cluster = cluster
        self.strategy = strategy
62

63 64 65
        self._executor = None
        self._orig_main_prog = fluid.default_main_program()
        self._orig_startup_prog = fluid.default_startup_program()
66
        self._orig_dist_context = get_default_distributed_context()
67 68
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
69 70
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
71 72 73 74
        self._dist_contexts = {}
        self._pass_contexts = {}
        self._cur_rank = paddle.distributed.get_rank()
        self._logger = get_logger(logging.INFO)
75 76 77
        self._saver = DistributedSaver()
        self._feed_vars = {}
        self._fetch_vars = {}
78 79 80 81 82

    def prepare(self,
                optimizer=None,
                loss=None,
                metrics=None,
83
                mode='train',
84
                all_ranks=False):
85 86 87 88 89 90 91 92 93 94
        self._optimizer = optimizer
        # TODO: check loss type
        self._loss = loss
        self._metrics = to_list(metrics)
        for m in ['train', 'predict']:
            self.mode = m
            self._build(m)  # build forward program
            self._plan(m)  # completion & planner
            self._parallel(m, all_ranks)  # parallel
            self._initialize(m)  # init comm and startup program
95 96
        self.mode = mode

97 98
    def _build(self, mode):
        serial_main_prog = self._serial_main_progs.get(mode, None)
99 100 101
        if serial_main_prog is not None:
            return

102 103
        losses = []
        metrics = []
104 105 106
        serial_main_prog = self._orig_main_prog.clone()
        serial_startup_prog = self._orig_startup_prog.clone()
        with fluid.program_guard(serial_main_prog, serial_startup_prog):
107 108 109 110
            inputs_spec = self.inputs_spec
            labels_spec = self.labels_spec if self.labels_spec else []
            inputs = [s._create_feed_layer() for s in inputs_spec]
            labels = [s._create_feed_layer() for s in labels_spec]
111
            outputs = to_list(self.model(*inputs))
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
            if mode != "predict" and self._loss:
                losses = to_list(self._loss(*(outputs + labels)))

        self._feed_vars[mode] = {"inputs": inputs, "labels": labels}

        self._fetch_vars[mode] = {
            "outputs": outputs,
            "loss": losses,
            "metrics": metrics
        }

        self._serial_main_progs[mode] = serial_main_prog
        self._serial_startup_progs[mode] = serial_startup_prog
        self._dist_contexts[mode] = DistributedContext(
            serial_main_prog, serial_startup_prog, self._dist_main_progs[mode],
            self._dist_startup_progs[mode])
        self._pass_contexts[mode] = PassContext()

    def _plan(self, mode):
131
        # Complete the distributed annotation
132 133
        serial_main_prog = self._serial_main_progs[mode]
        self._completer = Completer(self._dist_contexts[mode])
134 135
        self._completer.complete_forward_annotation(serial_main_prog)
        # TODO: add auto planner process
J
JZ-LIANG 已提交
136
        # parse forward sub block
137
        self._dist_contexts[mode].block_state.parse_forward_blocks(
J
JZ-LIANG 已提交
138
            serial_main_prog)
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    def _parallel(self, mode, all_ranks=False):
        if not all_ranks:
            self._parallel_program(mode, self._cur_rank)
        else:
            world_process_group = get_world_process_group()
            all_ranks = world_process_group.ranks
            for rank in all_ranks:
                self._parallel_program(mode, rank)

    def _initialize(self, mode):
        # Traverse different rank programs and traverse each op of them,
        # instantiate communication by process_mapping.
        all_process_groups = get_all_process_groups()
        for process_group in all_process_groups:
            if self._cur_rank not in process_group.ranks:
                continue
            process_group.instantiate()

        # initialize
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
        if self._executor is None:
            self._executor = paddle.static.Executor(self._place)
        dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
        self._executor.run(dist_startup_prog)

    def _parallel_program(self, mode, rank):
        serial_main_program = self._serial_main_progs[mode]
        serial_startup_program = self._serial_startup_progs[mode]
        dist_context = self._dist_contexts[mode]
        if mode == "train" and self._optimizer:
172
            # Generate backward
173
            serial_loss = self._fetch_vars[mode]["loss"][0]
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
            params_grads = self._generate_backward(
                serial_main_program, serial_startup_program, serial_loss)
            # Apply pre optimization passes
            self._apply_pre_optimization(serial_main_program,
                                         serial_startup_program, serial_loss,
                                         params_grads)
            # Do logical partition
            partitioner = Partitioner(dist_context, rank)
            dist_main_prog, dist_startup_prog, dist_params_grads = partitioner.partition(
                serial_main_program, serial_startup_program, params_grads)
            # Generate optimizer
            self._generate_optimizer(dist_main_prog, dist_startup_prog,
                                     dist_params_grads)
            # Do reshard process
            set_grad_var_shape(dist_main_prog, dist_context)
            make_data_unshard(dist_main_prog, dist_startup_prog, dist_context)
            reshard(dist_main_prog, dist_startup_prog, rank, dist_context,
                    dist_params_grads)
            # Apply post optimization passes
            self._apply_post_optimization(dist_main_prog, dist_startup_prog,
                                          rank, dist_params_grads)
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        else:
            # Do logical partition
            partitioner = Partitioner(dist_context, rank)
            dist_main_prog, dist_startup_prog, dist_params_grads = partitioner.partition(
                serial_main_program, serial_startup_program, [])
            # Do reshard process
            make_data_unshard(dist_main_prog, dist_startup_prog, dist_context)
            reshard(dist_main_prog, dist_startup_prog, rank, dist_context, [],
                    1)

        # clone program for test
        if mode != 'train':
            dist_main_prog = dist_main_prog.clone(for_test=True)
            dist_startup_prog = dist_startup_prog.clone(for_test=True)

        self._dist_main_progs[mode][rank] = dist_main_prog
        self._dist_startup_progs[mode][rank] = dist_startup_prog
212 213 214 215 216 217 218

    def _generate_backward(self, main_program, startup_program, loss):
        with program_guard(main_program, startup_program):
            params_grads = append_backward(
                loss,
                distop_context=self._dist_contexts[self.mode].dist_op_context)
        self._completer.complete_backward_annotation(main_program)
J
JZ-LIANG 已提交
219 220
        self._dist_contexts[self.mode].block_state.parse_backward_blocks(
            main_program)
221 222 223 224
        return params_grads

    def _generate_optimizer(self, main_program, startup_program, params_grads):
        with program_guard(main_program, startup_program):
225
            optimizer_ops = copy.deepcopy(self._optimizer).apply_gradients(
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
                params_grads)
        self._completer.complete_update_annotation(main_program)
        return optimizer_ops

    def _apply_pre_optimization(self, main_program, startup_program, loss,
                                params_grads):
        # apply amp pass
        if self.strategy.amp:
            config = copy.deepcopy(self.strategy.amp_configs)
            config["dist_context"] = self._dist_contexts[self.mode]
            config["params_grads"] = params_grads
            config["loss"] = loss
            auto_parallel_amp_pass = new_pass("auto_parallel_amp", config)
            auto_parallel_amp_pass.apply([main_program], [startup_program],
                                         self._pass_contexts[self.mode])

        # apply recompute pass
        if self.strategy.recompute:
            config = copy.deepcopy(self.strategy.recompute_configs)
            config["dist_context"] = self._dist_contexts[self.mode]
            config["no_grad_set"] = None
            config["loss"] = loss
            auto_parallel_recompute_pass = new_pass("auto_parallel_recompute",
                                                    config)
            auto_parallel_recompute_pass.apply([main_program],
                                               [startup_program],
                                               self._pass_contexts[self.mode])

    def _apply_post_optimization(self, main_program, startup_program, rank,
                                 params_grads):
        if self.strategy.sharding:
            config = copy.deepcopy(self.strategy.sharding_configs)
            config["dist_context"] = self._dist_contexts[self.mode]
            config["params_grads"] = params_grads
            config["global_rank"] = rank
            auto_parallel_sharding_pass = new_pass("auto_parallel_sharding",
                                                   config)
            auto_parallel_sharding_pass.apply([main_program],
                                              [startup_program],
                                              self._pass_contexts[self.mode])

        if self.strategy.gradient_merge:
            config = copy.deepcopy(self.strategy.gradient_merge_configs)
            config["dist_context"] = self._dist_contexts[self.mode]
            config["params_grads"] = params_grads
            auto_parallel_gradient_merge_pass = new_pass(
                "auto_parallel_gradient_merge_pass", config)
            auto_parallel_gradient_merge_pass.apply(
                [main_program], [startup_program],
                self._pass_contexts[self.mode])

277 278 279 280
    def fit(self, train_data, batch_size=1, epochs=1, steps_per_epoch=None):
        # TODO: callbacks
        # TODO: evaluate after training
        self.mode = 'train'
281 282 283
        assert isinstance(train_data, Dataset)
        train_dataloader = self._create_dataloader(train_data, batch_size,
                                                   epochs, steps_per_epoch)
284 285

        outputs = []
286 287
        for epoch in range(epochs):
            for step, data in enumerate(train_dataloader):
288 289
                logs, loss = self._train_step(data)
                outputs.append(loss)
290 291 292 293
                train_logs = {
                    "train_" + name: val
                    for name, val in logs.items()
                }
294
                self._logger.info(train_logs)
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
        return outputs

    def predict(self,
                test_data,
                batch_size=1,
                use_program_cache=False,
                return_numpy=True):
        self.mode = 'predict'
        # TODO: need check dataset
        test_dataloader = self._create_dataloader(test_data, batch_size)

        outputs = []
        for step, data in enumerate(test_dataloader):
            logs, outs = self._predict_step(data, use_program_cache,
                                            return_numpy)
            outputs.append(outs)
            predict_logs = {
                "predict_" + name: val
                for name, val in logs.items()
            }
            self._logger.info(predict_logs)
        return outputs
317 318 319

    def _train_step(self, data):
        logs = {}
320 321 322
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        fetch_var = self._fetch_vars[self.mode]["loss"][0]
        if fetch_var.name not in dist_main_prog.global_block().vars:
323 324 325
            loss = self._executor.run(dist_main_prog)
            logs["loss"] = None
        else:
326 327
            loss = self._executor.run(dist_main_prog,
                                      fetch_list=to_list(fetch_var))
328
            logs["loss"] = loss
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
        return logs, loss

    def _predict_step(self, data, use_program_cache=False, return_numpy=True):
        logs = {}
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        fetch_var = []
        for var in self._fetch_vars[self.mode]["outputs"]:
            if var.name in dist_main_prog.global_block().vars:
                fetch_var.append(var)

        if fetch_var is []:
            outs = self._executor.run(dist_main_prog,
                                      use_program_cache=use_program_cache)
            logs["pred"] = outs
        else:
            outs = self._executor.run(dist_main_prog,
                                      fetch_list=fetch_var,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            logs["pred"] = outs
        return logs, outs
350

351 352 353 354 355 356 357
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
                           steps_per_epoch=None):
        feed_list = self._feed_vars[self.mode]["inputs"] + self._feed_vars[
            self.mode]["labels"]
358 359 360 361
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
362 363
        serial_main_prog = self._serial_main_progs[self.mode]
        serial_main_block = serial_main_prog.global_block()
364 365 366
        op_size = len(dist_main_block.ops)
        places = paddle.static.cuda_places()
        with fluid.program_guard(dist_main_prog, dist_startup_prog):
367
            inputs = self._feed_vars[self.mode]["inputs"]
368
            dataloader = NonIterableGeneratorLoader(
369 370 371 372 373 374 375
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
                inputs=inputs)
376
        new_op_size = len(dist_main_block.ops)
377
        for _ in range(new_op_size - 1, op_size - 1, -1):
378 379 380 381 382 383
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type())
            dist_main_block.ops.insert(0, new_op)
384 385 386 387 388 389 390 391 392 393 394
            for in_name in new_op.input_arg_names:
                if in_name == "lod_tensor_blocking_queue_0":
                    continue
                if in_name not in dist_main_block.vars:
                    in_var = serial_main_block._var_recursive(in_name)
                    dist_main_block._clone_variable(in_var, in_var.persistable)
            for out_name in new_op.output_arg_names:
                if out_name not in dist_main_block.vars:
                    out_var = serial_main_block._var_recursive(out_name)
                    dist_main_block._clone_variable(out_var,
                                                    out_var.persistable)
395 396 397 398 399 400 401
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
            assert 'train' in self._serial_main_progs, "training model is not ready, please call `engine.prepare(mode='train')` first."
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context)
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog)
438

439 440 441 442
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
443

444 445 446 447
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)