batch_norm_op.cc 33.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
Q
qingqing01 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17
#include <string>
Q
qingqing01 已提交
18
#include <unordered_map>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/data_layout.h"
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
23 24 25 26

namespace paddle {
namespace operators {

Q
qingqing01 已提交
27
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
28 29 30 31 32 33 34
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance", "BatchNorm");
  OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "BatchNorm");

Q
qingqing01 已提交
35 36
  bool is_test = ctx->Attrs().Get<bool>("is_test");
  if (!is_test) {
37 38 39 40 41 42 43
    OP_INOUT_CHECK(ctx->HasOutput("MeanOut"), "Output", "MeanOut", "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("VarianceOut"), "Output", "VarianceOut",
                   "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("SavedMean"), "Output", "SavedMean",
                   "BatchNorm");
    OP_INOUT_CHECK(ctx->HasOutput("SavedVariance"), "Output", "SavedVariance",
                   "BatchNorm");
Q
Qiao Longfei 已提交
44
  }
K
Kexin Zhao 已提交
45

Q
qingqing01 已提交
46 47
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
48 49 50 51 52 53
                    platform::errors::InvalidArgument(
                        "Mean and MeanOut should share the same memory"));
  PADDLE_ENFORCE_EQ(
      ctx->Inputs("Variance")[0], ctx->Outputs("VarianceOut")[0],
      platform::errors::InvalidArgument(
          "Variance and VarianceOut should share the same memory"));
Q
qingqing01 已提交
54 55 56 57 58

  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));

59 60 61 62 63 64 65
  if (ctx->IsRuntime() && ctx->HasInput("MomentumTensor")) {
    auto mom = ctx->Inputs("MomentumTensor");
    PADDLE_ENFORCE_EQ(mom.size(), 1,
                      platform::errors::InvalidArgument(
                          "Input(MomentumTensor) size must be 1"));
  }

66 67
  PADDLE_ENFORCE_GE(
      x_dims.size(), 2,
K
Kaipeng Deng 已提交
68 69 70 71 72
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input "
          "X must greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
          x_dims, x_dims.size()));
73 74
  PADDLE_ENFORCE_LE(
      x_dims.size(), 5,
K
Kaipeng Deng 已提交
75 76 77 78 79
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input X "
          "must smaller than or equal to 5. But received: the shape of input X "
          "= [%s], the dimension of input X = [%d]",
          x_dims, x_dims.size()));
Q
qingqing01 已提交
80 81

  const int64_t C =
82 83 84
      ((this->IsMKLDNNType() == true) || (data_layout == DataLayout::kNCHW)
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);
Q
qingqing01 已提交
85

86 87
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
88

89
  PADDLE_ENFORCE_EQ(
90 91 92 93 94 95 96 97 98 99 100 101
      scale_dim.size(), 1UL,
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of scale must equal to 1."
          "But received: the shape of scale is [%s], the dimension "
          "of scale is [%d]",
          scale_dim, scale_dim.size()));
  PADDLE_ENFORCE_EQ(bias_dim.size(), 1UL,
                    platform::errors::InvalidArgument(
                        "ShapeError: the dimension of bias must equal to 1."
                        "But received: the shape of bias is [%s],the dimension "
                        "of bias is [%d]",
                        bias_dim, bias_dim.size()));
C
ceci3 已提交
102

103 104 105 106 107 108 109
  bool check = true;
  if ((!ctx->IsRuntime()) && (framework::product(scale_dim) <= 0 ||
                              framework::product(bias_dim) <= 0)) {
    check = false;
  }

  if (check) {
110
    PADDLE_ENFORCE_EQ(scale_dim[0], C,
111 112 113 114
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of scale must equal to [%d]"
                          "But received: the shape of scale is [%d]",
                          C, scale_dim[0]));
115
    PADDLE_ENFORCE_EQ(bias_dim[0], C,
116 117 118 119
                      platform::errors::InvalidArgument(
                          "ShapeError: the shape of bias must equal to [%d]"
                          "But received: the shape of bias is [%d]",
                          C, bias_dim[0]));
120
  }
Q
qingqing01 已提交
121 122 123 124 125 126 127 128 129 130
  ctx->SetOutputDim("Y", x_dims);
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
131
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
Q
qingqing01 已提交
132 133 134 135 136 137 138
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
K
Kaipeng Deng 已提交
139 140 141 142 143 144 145 146 147
  PADDLE_ENFORCE_EQ(
      bn_param_type, ctx.Input<Tensor>("Scale")->type(),
      platform::errors::InvalidArgument("Scale input should be of float type"));
  PADDLE_ENFORCE_EQ(
      bn_param_type, ctx.Input<Tensor>("Bias")->type(),
      platform::errors::InvalidArgument("Bias input should be of float type"));
  PADDLE_ENFORCE_EQ(
      bn_param_type, ctx.Input<Tensor>("Mean")->type(),
      platform::errors::InvalidArgument("Mean input should be of float type"));
Q
qingqing01 已提交
148
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Variance")->type(),
K
Kaipeng Deng 已提交
149 150
                    platform::errors::InvalidArgument(
                        "Variance input should be of float type"));
Q
qingqing01 已提交
151 152 153 154

  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
155
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
156 157 158 159
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
K
Kexin Zhao 已提交
160
  }
Q
qingqing01 已提交
161
#endif
Q
Qiao Longfei 已提交
162

Q
qingqing01 已提交
163 164 165 166
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
framework::OpKernelType BatchNormOp::GetKernelTypeForVar(
    const std::string &var_name, const Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "X") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
183 184
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
185 186 187 188 189 190 191
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Q
qingqing01 已提交
192 193 194 195 196 197 198 199 200
void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
K
Kaipeng Deng 已提交
201 202 203 204 205 206 207
        PADDLE_ENFORCE_GE(
            epsilon, 0.0f,
            platform::errors::InvalidArgument(
                "'epsilon' should be greater or equal than 0.0."));
        PADDLE_ENFORCE_LE(epsilon, 0.001f,
                          platform::errors::InvalidArgument(
                              "'epsilon' should be less or equal than 0.001."));
Q
qingqing01 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
223 224 225 226 227
  AddInput("MomentumTensor",
           "(Tensor<float32>, optional) If provided, batch_norm will "
           "use this as momentum, this has a higher priority than "
           "attr(momentum), the shape of this tensor MUST BE [1].")
      .AsDispensable();
Q
qingqing01 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
243 244 245 246
  AddOutput("ReserveSpace",
            "Reserve GPU space for triggering the new semi-persistent "
            "NHWC kernel")
      .AsDispensable();
Q
qingqing01 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_with_relu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
K
Kaipeng Deng 已提交
261

Q
qingqing01 已提交
262
  AddComment(R"DOC(
263
Batch Normalization.
Q
Qiao Longfei 已提交
264

265 266 267 268 269 270
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
271 272

)DOC");
Q
qingqing01 已提交
273
}
C
chengduo 已提交
274

Q
Qiao Longfei 已提交
275
template <typename T>
Q
QI JUN 已提交
276 277
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
278 279 280
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
281
    float momentum = ctx.Attr<float>("momentum");
Q
Qiao Longfei 已提交
282
    const bool is_test = ctx.Attr<bool>("is_test");
283 284 285 286
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");

    bool global_stats = is_test || use_global_stats;

Q
QI JUN 已提交
287 288 289
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
290 291 292

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
K
Kaipeng Deng 已提交
293 294 295 296 297 298
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "The Input X dim size should be larger than 1."));
    PADDLE_ENFORCE_LE(x_dims.size(), 5,
                      platform::errors::InvalidArgument(
                          "The Input X dim size should be less than 6."));
Q
Qiao Longfei 已提交
299 300
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
301 302
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
303 304 305
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
K
Kaipeng Deng 已提交
306

Q
Qiao Longfei 已提交
307 308 309 310 311 312 313 314 315 316 317 318
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

319
    if (!global_stats) {
Q
Qiao Longfei 已提交
320 321 322 323 324 325 326 327
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

328 329 330 331 332 333
      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);

      if ((N * sample_size) == 1) {
334 335
        // Only 1 element in normalization dimension,
        // we skip the batch norm calculation, let y = x.
336
        framework::TensorCopy(*x, ctx.GetPlace(), y);
337 338 339
        return;
      }

Q
QI JUN 已提交
340 341
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
342 343 344 345 346 347 348 349 350 351 352 353
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
354
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
368
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
369 370
      }

371 372 373 374 375 376 377
      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        momentum = mom_tensor->data<float>()[0];
      }

Q
Qiao Longfei 已提交
378 379 380 381 382 383 384 385
      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
386
    if (global_stats) {
Q
Qiao Longfei 已提交
387 388 389 390 391 392 393 394 395 396 397
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
398 399
        global_stats ? ctx.Input<Tensor>("Mean")->data<T>()
                     : ctx.Output<Tensor>("SavedMean")->data<T>(),
Q
Qiao Longfei 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
413 414
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
415 416 417 418 419 420 421 422
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
423
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
424 425 426 427 428 429 430 431 432
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
433
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
434 435 436 437
    }
  }
};

Q
qingqing01 已提交
438 439
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
440 441 442 443 444 445 446
  OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                 framework::GradVarName("Y"), "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean",
                 "BatchNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance",
                 "BatchNormGrad");
Q
qingqing01 已提交
447 448

  // check output
449 450
  OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                 framework::GradVarName("X"), "BatchNormGrad");
451 452 453 454 455

  const bool has_scale_grad = ctx->HasOutput(framework::GradVarName("Scale"));
  const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("Bias"));

  PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad), true,
456
                    platform::errors::NotFound(
457 458 459 460 461
                        "Output(Scale@GRAD) and Output(Bias@GRAD) must be null "
                        "or not be null at same time. But now, "
                        "has Scale@Grad=[%d], has Bias@GRAD=[%d]",
                        has_scale_grad, has_bias_grad));

Q
qingqing01 已提交
462 463
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
K
Kaipeng Deng 已提交
464 465 466 467 468
    PADDLE_ENFORCE_EQ(
        !ctx->Attrs().Get<bool>("use_mkldnn"), true,
        platform::errors::InvalidArgument(
            "Using global stats during training is not supported "
            "in gradient op kernel of batch_norm_mkldnn_op now."));
Q
qingqing01 已提交
469
  }
Q
Qiao Longfei 已提交
470

K
Kaipeng Deng 已提交
471 472 473 474 475
  // batch_norm_grad with inplace takes Y as input, without inplace
  // takes X as input. HasInput will throw exception in compile time,
  // so only infer shape in run time here.
  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X") || ctx->HasInput("Y"), true,
476
                      platform::errors::NotFound(
K
Kaipeng Deng 已提交
477 478 479 480 481 482
                          "Input(X) and Input(Y) should not be all null."));
    auto input_name = "Y";
    if (ctx->HasInput("X")) input_name = "X";
    const auto x_dims = ctx->GetInputDim(input_name);
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
Q
Qiao Longfei 已提交
483

K
Kaipeng Deng 已提交
484 485 486 487 488 489 490 491 492 493 494
    const int C =
        ((this->IsMKLDNNType() == true) || (data_layout == DataLayout::kNCHW)
             ? x_dims[1]
             : x_dims[x_dims.size() - 1]);

    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    // has_scale_grad == has_bias_grad, judge has_scale_grad is enough
    if (has_scale_grad) {
      ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
      ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
    }
Q
Qiao Longfei 已提交
495
  }
Q
qingqing01 已提交
496
}
Q
Qiao Longfei 已提交
497

Q
qingqing01 已提交
498 499 500 501
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
K
Kaipeng Deng 已提交
502 503
    PADDLE_THROW(
        platform::errors::InvalidArgument("can't find gradient variable of Y"));
Q
qingqing01 已提交
504 505 506 507 508 509 510 511
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
K
Kaipeng Deng 已提交
512 513
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
Q
qingqing01 已提交
514
  }
515

Q
qingqing01 已提交
516 517 518
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
519

520
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
521 522 523 524 525
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
526
#endif
527

528 529 530
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(), layout,
      library);
Q
qingqing01 已提交
531
}
Q
Qiao Longfei 已提交
532

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
framework::OpKernelType BatchNormGradOp::GetKernelTypeForVar(
    const std::string &var_name, const Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "X") || (var_name == framework::GradVarName("Y"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Q
Qiao Longfei 已提交
558
template <typename T>
Q
QI JUN 已提交
559
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
560 561 562 563 564
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
K
Kaipeng Deng 已提交
565
    const auto *bias = ctx.Input<Tensor>("Bias");
Q
Qiao Longfei 已提交
566 567 568
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
569
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
570
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
571
    const bool is_test = ctx.Attr<bool>("is_test");
572
    const float epsilon = ctx.Attr<float>("epsilon");
Q
QI JUN 已提交
573 574
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
575

K
Kaipeng Deng 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    // batch_norm with inplace as false will take X as grad input, which
    // is same as cuDNN batch_norm backward calculation, batch_norm
    // with inplace as true only take Y as input and X should be calculate
    // by inverse operation of batch_norm on Y
    const Tensor *x;
    bool is_inplace;
    if (ctx.HasInput("Y")) {
      x = ctx.Input<Tensor>("Y");
      is_inplace = true;
      PADDLE_ENFORCE_EQ(d_x, d_y,
                        platform::errors::InvalidArgument(
                            "X@GRAD and Y@GRAD not inplace in inplace mode"));
    } else {
      x = ctx.Input<Tensor>("X");
      is_inplace = false;
      PADDLE_ENFORCE_NE(d_x, d_y,
                        platform::errors::InvalidArgument(
                            "X@GRAD and Y@GRAD inplaced in non-inplace mode"));
    }

600 601 602 603 604 605 606
    PADDLE_ENFORCE_EQ(
        is_test, false,
        platform::errors::InvalidArgument(
            "`is_test = True` CANNOT be used in train program. If "
            "you want to use global status in pre_train model, "
            "please set `use_global_stats = True`"));

Q
Qiao Longfei 已提交
607 608 609
    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
K
Kaipeng Deng 已提交
610 611 612 613 614 615
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      platform::errors::InvalidArgument(
                          "The Input X dim size should be larger than 1."));
    PADDLE_ENFORCE_LE(x_dims.size(), 5,
                      platform::errors::InvalidArgument(
                          "The Input X dim size should be less than 6."));
Q
Qiao Longfei 已提交
616 617
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
618 619
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
620 621 622 623
    const int sample_size = x->numel() / N / C;

    // init output
    d_x->mutable_data<T>(ctx.GetPlace());
624 625 626 627 628 629 630 631

    const T *mean_data = saved_mean->data<T>();
    const T *inv_var_data = saved_inv_variance->data<T>();
    Tensor inv_var_tensor;
    if (use_global_stats) {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_variance = ctx.Input<Tensor>("Variance");
      mean_data = running_mean->data<T>();
Z
Zeng Jinle 已提交
632
      inv_var_tensor.Resize({C});
633 634 635 636
      T *running_inv_var_data = inv_var_tensor.mutable_data<T>(ctx.GetPlace());
      EigenVectorArrayMap<T> inv_var_tmp(running_inv_var_data, C);
      ConstEigenVectorArrayMap<T> var_arr(running_variance->data<T>(), C);

637
      inv_var_tmp = (var_arr + epsilon).sqrt().inverse();
638 639 640 641
      inv_var_data = running_inv_var_data;
    }

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
K
Kaipeng Deng 已提交
642
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
643 644 645 646 647 648 649 650 651 652 653
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

    T *d_bias_data = nullptr;
    T *d_scale_data = nullptr;
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
      d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
    }
Q
Qiao Longfei 已提交
654 655 656 657 658

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))
659 660
    EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
Q
Qiao Longfei 已提交
661

662 663 664 665
    if (d_scale && d_bias) {
      d_bias_arr.setZero();
      d_scale_arr.setZero();
    }
Q
Qiao Longfei 已提交
666

667 668
    if ((N * sample_size) == 1 && !use_global_stats) {
      framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
669 670 671
      return;
    }

672 673
    int scale_coefff = use_global_stats ? 1 : N * sample_size;
    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / scale_coefff;
Q
Qiao Longfei 已提交
674

L
lvmengsi 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    Tensor dy_sum;
    dy_sum.Resize({C});
    dy_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_sum_arr(dy_sum.mutable_data<T>(ctx.GetPlace()),
                                      C);

    Tensor dy_mul_x_sub_mean_mul_invstd_sum;
    dy_mul_x_sub_mean_mul_invstd_sum.Resize({C});
    dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_mul_x_sub_mean_mul_invstd_sum_arr(
        dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace()), C);

    dy_sum_arr.setZero();
    dy_mul_x_sub_mean_mul_invstd_sum_arr.setZero();

K
Kaipeng Deng 已提交
690 691 692 693 694 695 696
    // inplace calculation
    // Y:  ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    // X: (y - bias) / scale / (inv_var) + est_mean
    //   formula transform ====>
    //    (y - bias) / (scale * inv_var) + est_mean
Q
QI JUN 已提交
697 698
    switch (data_layout) {
      case DataLayout::kNCHW: {
K
Kaipeng Deng 已提交
699 700 701 702 703 704 705 706 707 708 709
        if (is_inplace) {
          auto px = *x;
          EigenArrayMap<T> x_data(px.mutable_data<T>(ctx.GetPlace()),
                                  sample_size, N * C);
          ConstEigenArrayMap<T> y_data(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            x_data.col(nc) = (y_data.col(nc) - bias_arr(nc % C)) /
                                 scale_inv_var_nhw(nc % C) / scale_coefff +
                             mean_arr(nc % C);
          }
        }
Q
Qiao Longfei 已提交
710 711 712 713 714
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);

L
lvmengsi 已提交
715 716 717 718 719 720 721 722
        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          dy_sum_arr(c) += d_y_arr.col(nc).sum();
          dy_mul_x_sub_mean_mul_invstd_sum_arr(c) +=
              ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc))
                  .sum();
        }

723
        if (d_scale && d_bias) {
L
lvmengsi 已提交
724 725
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
Q
Qiao Longfei 已提交
726
        }
L
lvmengsi 已提交
727

728 729 730
        if (!use_global_stats) {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
K
Kaipeng Deng 已提交
731
            d_x_arr.col(nc) =
732
                scale_inv_var_nhw(c) *
L
lvmengsi 已提交
733 734 735
                (d_y_arr.col(nc) * N * sample_size - dy_sum_arr(c) -
                 (x_arr.col(nc) - mean_arr[c]) *
                     dy_mul_x_sub_mean_mul_invstd_sum_arr(c) * inv_var_arr(c));
736 737 738 739
          }
        } else {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
K
Kaipeng Deng 已提交
740
            d_x_arr.col(nc) = scale_inv_var_nhw(c) * d_y_arr.col(nc);
741
          }
Q
Qiao Longfei 已提交
742 743 744
        }
        break;
      }
Q
QI JUN 已提交
745
      case DataLayout::kNHWC: {
K
Kaipeng Deng 已提交
746 747 748 749 750 751 752 753 754 755 756
        if (is_inplace) {
          auto px = *x;
          EigenArrayMap<T> x_data(px.mutable_data<T>(ctx.GetPlace()), C,
                                  N * sample_size);
          ConstEigenArrayMap<T> y_data(x->data<T>(), C, N * sample_size);
          for (int nhw = 0; nhw < N * sample_size; nhw++) {
            x_data.col(nhw) = (y_data.col(nhw) - bias_arr) / scale_inv_var_nhw /
                                  scale_coefff +
                              mean_arr;
          }
        }
Q
Qiao Longfei 已提交
757 758 759 760 761
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);

L
lvmengsi 已提交
762 763 764 765 766
        for (int nhw = 0; nhw < N * sample_size; ++nhw) {
          dy_sum_arr += d_y_arr.col(nhw);
          dy_mul_x_sub_mean_mul_invstd_sum_arr +=
              (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
        }
767 768

        if (d_scale && d_bias) {
L
lvmengsi 已提交
769 770
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
771 772 773 774
        }

        if (!use_global_stats) {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
K
Kaipeng Deng 已提交
775
            d_x_arr.col(nhw) =
776
                scale_inv_var_nhw *
L
lvmengsi 已提交
777 778 779
                (d_y_arr.col(nhw) * N * sample_size - dy_sum_arr -
                 (x_arr.col(nhw) - mean_arr) *
                     dy_mul_x_sub_mean_mul_invstd_sum_arr * inv_var_arr);
780 781 782
          }
        } else {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
K
Kaipeng Deng 已提交
783
            d_x_arr.col(nhw) = scale_inv_var_nhw * d_y_arr.col(nhw);
784
          }
Q
Qiao Longfei 已提交
785 786 787 788
        }
        break;
      }
      default:
Q
QI JUN 已提交
789
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
790 791 792 793
    }
  }
};

H
hong 已提交
794
template <typename T>
795
void BatchNormGradMaker<T>::Apply(GradOpPtr<T> op) const {
796 797 798 799 800 801 802 803
  op->SetType(this->ForwardOpType() + "_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("Bias", this->Input("Bias"));
  op->SetInput("SavedMean", this->Output("SavedMean"));
  op->SetInput("SavedVariance", this->Output("SavedVariance"));
804 805 806
  if (this->HasOutput("ReserveSpace")) {
    op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
  }
807 808 809 810 811 812

  // used when setting use_global_stats True during training
  if (boost::get<bool>(this->GetAttr("use_global_stats"))) {
    op->SetInput("Mean", this->Output("MeanOut"));
    op->SetInput("Variance", this->Output("VarianceOut"));
  }
813

814
  op->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
815

816 817 818 819
  op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
}
Y
Yu Yang 已提交
820

Q
Qiao Longfei 已提交
821 822 823 824
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
825
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
H
hong 已提交
826 827 828
                  ops::BatchNormOpInferVarType,
                  ops::BatchNormGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormGradMaker<paddle::imperative::OpBase>);
829
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp);
Y
Yu Yang 已提交
830

Q
QI JUN 已提交
831
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
832 833
    batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
Q
Qiao Longfei 已提交
834 835
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
D
dzhwinter 已提交
836 837
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);