parallel_executor.cc 10.4 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
Y
Yu Yang 已提交
20

X
Xin Pan 已提交
21 22
#include "paddle/fluid/framework/details/ssa_graph.h"

Y
Yu Yang 已提交
23
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
24
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
25
#endif
Y
Yang Yang 已提交
26

Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/ssa_graph_builder_factory.h"
Y
Yu Yang 已提交
29
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
30
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
31

Y
Yang Yang 已提交
32
namespace paddle {
Y
Yu Yang 已提交
33 34
namespace framework {

Y
Yu Yang 已提交
35 36 37
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
38
      : places_(places) {}
Y
Yu Yang 已提交
39 40 41 42

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
43
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
46
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
47
#endif
C
chengduoZH 已提交
48 49
  bool own_local_scope_;
  bool use_cuda_;
50
  bool use_all_reduce_;
Y
Yu Yang 已提交
51 52
};

53 54 55 56
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
57
ParallelExecutor::ParallelExecutor(
58
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
59
    const std::unordered_set<std::string> &params,
60 61
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
62
    Scope *scope, const std::vector<Scope *> &local_scopes,
63
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
64
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
65
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
66
  member_->global_scope_ = scope;
67
  member_->use_cuda_ = exec_strategy.use_cuda_;
68 69 70 71 72 73 74 75
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
  }
Y
Yu Yang 已提交
76

77
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
78
  // Create local scopes
79
  if (local_scopes.empty()) {
C
chengduoZH 已提交
80
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
81 82
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
83
      member_->local_scopes_.emplace_back(&scope->NewScope());
84 85
    }
  } else {
C
chengduoZH 已提交
86
    member_->own_local_scope_ = false;
87 88
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
89
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
90
    }
Y
Yu Yang 已提交
91 92
  }

C
chengduoZH 已提交
93
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
94 95
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
96 97 98 99 100 101 102 103 104
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
105
#endif
C
chengduoZH 已提交
106 107 108
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
109
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
110
  }
Y
yuyang18 已提交
111 112 113 114 115 116 117 118 119 120
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Create vars in each scope;
  std::vector<details::VariableInfo> var_infos;
  for (auto *var : main_program.Block(0).AllVars()) {
    var_infos.emplace_back();
    var_infos.back().name_ = var->Name();
    var_infos.back().type_ = var->GetType();
    var_infos.back().persistable_ = var->Persistable();
  }
Y
Yu Yang 已提交
121

Y
yuyang18 已提交
122 123 124
  // Step 3. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  details::SSAGraphBuilderFactory builder_factory(
Y
Yancey1989 已提交
125
      member_->places_, loss_var_name, params, member_->local_scopes_,
Y
yuyang18 已提交
126
      build_strategy);
C
chengduoZH 已提交
127
  if (member_->use_cuda_) {
Y
yuyang18 已提交
128
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
129 130
    builder_factory.SetNCCLContextMap(member_->nccl_ctxs_.get());
#else
131
    PADDLE_THROW("Not compiled with CUDA.");
Y
Yu Yang 已提交
132
#endif
C
chengduoZH 已提交
133
  }
Y
yuyang18 已提交
134

F
fengjiayi 已提交
135
  builder_ = builder_factory.Create();
X
Xin Pan 已提交
136
  std::unique_ptr<Graph> graph = builder_->Build(ProgramToGraph(main_program));
X
Xin Pan 已提交
137 138 139 140 141 142 143

  std::unique_ptr<details::SSAGraph> ssa_graph(new details::SSAGraph);
  ssa_graph->vars_ = std::move(graph->Get<details::GraphVars>("vars"));
  ssa_graph->ops_ = std::move(graph->Get<details::GraphOps>("ops"));
  ssa_graph->dep_vars_ =
      std::move(graph->Get<details::GraphDepVars>("dep_vars"));

Y
Yu Yang 已提交
144
  member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
X
Xin Pan 已提交
145
      exec_strategy, member_->local_scopes_, places, std::move(ssa_graph)));
Y
Yu Yang 已提交
146

Y
yuyang18 已提交
147 148 149
  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
150 151
}

Y
Yancey1989 已提交
152
void ParallelExecutor::BCastParamsToDevices(
153
    const std::unordered_set<std::string> &vars) const {
154
  // the initializing bcast, all vars would be bcast from device(0),
Y
yi.wu 已提交
155
  // otherwise
156
  // bcast from the specified device.
Y
wip  
yi.wu 已提交
157
  bool initializing = builder_.get() == nullptr ? true : false;
Y
Yu Yang 已提交
158

159
  for (auto &var : vars) {
160 161
    int var_dev_id =
        builder_.get() == nullptr ? -1 : builder_->GetVarDeviceID(var);
Y
yi.wu 已提交
162
    if (!initializing && var_dev_id == -1) continue;
163 164

    framework::Variable *main_var = nullptr;
Y
yi.wu 已提交
165
    if (initializing) {
166 167 168 169 170
      main_var = member_->local_scopes_[0]->FindVar(var);
    } else {
      main_var = member_->local_scopes_[var_dev_id]->FindVar(var);
    }

J
JiayiFeng 已提交
171
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
172 173 174 175 176 177
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
C
chengduoZH 已提交
178
#ifdef PADDLE_WITH_CUDA
179
      std::vector<void *> buffers;
180 181 182 183 184
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
185

Y
yi.wu 已提交
186
        if ((initializing && i == 0) ||
Y
update  
yi.wu 已提交
187
            (!initializing && static_cast<int>(i) == var_dev_id)) {
188 189
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
190
          auto local_scope = member_->local_scopes_[i];
191
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
192
          t->Resize(dims);
193
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
194
        }
195
        buffers.push_back(buffer);
196
      }
197

198 199 200 201 202 203
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
Y
yi.wu 已提交
204 205 206 207
          if (initializing) {
            platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                         nccl_ctx.comm_, nccl_ctx.stream());
          } else {
Y
update  
yi.wu 已提交
208
            if (var_dev_id >= 0) {
Y
yi.wu 已提交
209 210 211 212 213
              platform::dynload::ncclBcast(buffers[i], numel, data_type,
                                           var_dev_id, nccl_ctx.comm_,
                                           nccl_ctx.stream());
            }
          }
214
        }
215
        member_->nccl_ctxs_->WaitAll();
216
      }
217

C
chengduoZH 已提交
218 219 220
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
221 222
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
223 224 225 226 227
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        if ((initializing && i == 0) ||
            (!initializing && static_cast<int>(i) == var_dev_id))
          continue;

228 229
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
230 231 232 233

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
234 235 236 237 238 239
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
240
      }
Y
Stash  
Yu Yang 已提交
241 242
    }
  }
Y
Yu Yang 已提交
243
}
Y
Yu Yang 已提交
244

Y
Yu Yang 已提交
245 246
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
247
  platform::RecordBlock b(0);
Y
Yu Yang 已提交
248 249 250
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
251
}
Y
Yu Yang 已提交
252

Y
Yu Yang 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
272 273 274 275 276
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
277 278
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
279
      auto t =
Y
Yu Yang 已提交
280
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
281 282
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
283 284 285 286
    }
  }
}

287
ParallelExecutor::~ParallelExecutor() {
C
chengduoZH 已提交
288
  if (member_->own_local_scope_) {
289 290 291 292 293 294
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
      member_->global_scope_->DeleteScope(member_->local_scopes_[i]);
    }
  }
}

Y
Yu Yang 已提交
295
}  // namespace framework
Y
Yang Yang 已提交
296
}  // namespace paddle