model.py 85.5 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import os
import pickle
import numpy as np
import six
import warnings
25 26 27
import time
import socket
import contextlib
28 29
from collections import Iterable

30
import paddle
31
from paddle import fluid
32
from paddle.fluid import core
33 34 35 36 37
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Variable
from paddle.fluid.framework import ParamBase
from paddle.fluid.framework import _current_expected_place
from paddle.fluid.framework import _get_paddle_place
38
from paddle.fluid.framework import _current_expected_place as _get_device
39 40 41 42
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
43 44 45 46
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
from paddle.fluid.dygraph.dygraph_to_static.program_translator import FunctionSpec
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
47
from paddle.fluid.layers.utils import flatten
48
from paddle.fluid.layers import collective
49

50 51 52 53 54
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
from paddle.fluid.executor import scope_guard
from paddle.fluid.executor import Executor
55
from paddle.fluid.dygraph.layers import Layer
56
from paddle.metric import Metric
57
from paddle.static import InputSpec as Input
58
import paddle.distributed as dist
J
Jiaqi Liu 已提交
59 60
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet.base import role_maker
61

L
LiuChiachi 已提交
62
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
63
from .model_summary import summary
64

65
__all__ = []
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
    assert isinstance(var, (Variable, fluid.core.VarBase)), "not a variable"
    if isinstance(var, fluid.core.VarBase):
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream)


def wait_server_ready(endpoints):
    assert not isinstance(endpoints, six.string_types)
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
                    socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


def init_communicator(program, rank, nranks, wait_port, current_endpoint,
                      endpoints):
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
144
    block = program.global_block()
145 146
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints
            })

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            })
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
174
            name=fluid.unique_name.generate('hccl_id'),
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints
            })
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks
            })
196 197 198 199 200 201 202


def prepare_distributed_context(place=None):
    if place is None:
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
            else fluid.CUDAPlace(0)

203
    place = _get_paddle_place(place)
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
            init_communicator(communicator_prog, strategy.local_rank,
                              strategy.nranks, True, strategy.current_endpoint,
                              strategy.trainer_endpoints)
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

        if fluid.in_dygraph_mode():
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)
        else:
            _init_context()

    else:
        assert ("Only support CUDAPlace for now.")

    _parallel_context_initialized = True
    return strategy
237 238


L
LiuChiachi 已提交
239
def _update_input_info(inputs):
L
LiuChiachi 已提交
240
    "Get input shape list by given inputs in Model initialization."
241
    shapes = None
L
LiuChiachi 已提交
242
    dtypes = None
L
LiuChiachi 已提交
243 244
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
245
        dtypes = [inputs.dtype]
246
    elif isinstance(inputs, (list, tuple)):
247
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
248
        dtypes = [input.dtype for input in inputs]
249 250
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
251 252 253 254
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
255 256


257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
class StaticGraphAdapter(object):
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
        super(StaticGraphAdapter, self).__init__()
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
288 289 290 291 292
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    def train_batch(self, inputs, labels=None):
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
        self.mode = 'train'
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

311
    def predict_batch(self, inputs):
312 313 314 315
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
316
        return self.model.network.parameters(*args, **kwargs)
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
335
        _save(self.model.network.state_dict(), param_path)
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
            p.name: p
            for p in filter(is_belong_to_optimizer, prog.list_vars())
        }
        if not optim:
            return

        _save(optim, optim_path)

    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
            [param for param, state in param_state_pairs],
            global_scope(), executor)
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
                    np.array(converted_state.pop("global_step")) - 1
                ) if "global_step" in converted_state else converted_state.pop(
                    "@LR_DECAY_COUNTER@", None)
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
                        accum_name = name if opt_name is None else name[len(
                            opt_name) + 1:]
                        for param_name, state_var in self.model._optimizer._accumulators[
                                name].items():
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
                                for state_key in sorted(
                                        state.keys(),
                                        key=lambda x: len(x),
                                        reverse=True):
                                    prefix = param_name + "_" + (
                                        opt_cls_name
                                        if opt_name is None else opt_name) + "_"
                                    if state_key.startswith(prefix):
                                        prefix_offset = state_key[len(
                                            prefix):].find("_") + len(prefix)
                                        opt_unq_name = state_key[len(
                                            param_name + "_"):prefix_offset]
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
                            dy_state_name = (param_name + "_" + opt_unq_name +
                                             "_" + accum_name + "_0")
                            converted_state[
                                state_var.name] = converted_state.pop(
                                    dy_state_name)

            assert var.name in converted_state, \
                "variable [{}] is not in optimizer state file".format(var.name)
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
        assert compiled_prog, \
            "Model is not ready, please call `model.prepare()` first"

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
        assert len(inputs) == len(self._input_vars[self.mode]), \
            "number of inputs" \
            + " does not match number of arguments of `forward` method"

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

        rets = self._executor.run(compiled_prog,
                                  feed=feed,
                                  fetch_list=pruned_fetch_list,
                                  return_numpy=False)

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
            if self.mode != 'train' and self.model._test_dataloader is not None \
                    and isinstance(self.model._test_dataloader, DataLoader) \
                    and self._nranks > 1:
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
                        s[:int(total_size - current_count), ...] for s in state
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
531 532 533 534 535

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
        if mode == 'train' and self.model._optimizer \
                and self.model._optimizer._learning_rate_map:
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
567 568
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
569 570
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
571
            self._label_vars[mode] = labels
572
            outputs = to_list(self.model.network.forward(*inputs))
573

574 575
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
576 577 578 579 580 581 582 583

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
584
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
585 586 587 588 589 590

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
591 592 593 594 595 596 597
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
                        dist_strategy.amp_configs[
                            'use_pure_fp16'] = self._amp_level == 'O2'
598 599
                    self.model._optimizer = fleet.distributed_optimizer(
                        self.model._optimizer, strategy=dist_strategy)
J
Jiaqi Liu 已提交
600 601 602 603 604 605 606 607 608 609 610
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
                    amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
                        **self.
                        _amp_custom_lists) if self._amp_custom_lists else None

                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
                        **self._amp_configs)
611 612 613 614 615 616 617 618 619 620 621

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
622
            "loss": to_list(losses),
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
            "metric": metrics
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

        assert self.model._place is not None, \
            "device is not set, please call `model.prepare()` first"

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
                if not var_py.name.startswith('nccl_id') and var and \
                        var.get_tensor()._is_initialized():
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

J
Jiaqi Liu 已提交
654 655 656 657
        if self._amp_level == "O2" and mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model._optimizer.amp_init(place)

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


class DynamicGraphAdapter(object):
    def __init__(self, model):
        super(DynamicGraphAdapter, self).__init__()
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

L
LiuChiachi 已提交
679
        self._input_info = None
J
Jiaqi Liu 已提交
680 681 682 683 684
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

685
        if self._nranks > 1:
686
            dist.init_parallel_env()
687 688 689 690 691
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
692 693
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
                self.model.network, stradegy)
694 695 696 697 698 699 700 701 702 703

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
704
    def train_batch(self, inputs, labels=None, update=True):
705 706
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
707
        self.model.network.train()
708 709
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
710
        self._input_info = _update_input_info(inputs)
711 712 713
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

J
Jiaqi Liu 已提交
714 715 716 717 718 719
        if self._amp_level != "O0":
            scaler = paddle.amp.GradScaler(**self._amp_configs)
        with paddle.amp.auto_cast(
                enable=self._amp_level != 'O0', **self._amp_custom_lists):
            if self._nranks > 1:
                outputs = self.ddp_model.forward(
Z
zhangchunle 已提交
720
                    *[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
721 722
            else:
                outputs = self.model.network.forward(
Z
zhangchunle 已提交
723
                    *[to_variable(x) for x in inputs])
724

J
Jiaqi Liu 已提交
725 726 727
            losses = self.model._loss(*(to_list(outputs) + labels))
            losses = to_list(losses)
            final_loss = fluid.layers.sum(losses)
728

J
Jiaqi Liu 已提交
729 730 731
        if self._amp_level != "O0":
            scaled = scaler.scale(final_loss)
            scaled.backward()
L
lyuwenyu 已提交
732 733 734
            if update:
                scaler.minimize(self.model._optimizer, scaled)
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
735 736
        else:
            final_loss.backward()
L
lyuwenyu 已提交
737 738 739
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
740

741 742
        metrics = []
        for metric in self.model._metrics:
743
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
744
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
745 746 747 748 749 750
            metrics.append(m)

        return ([to_numpy(l) for l in losses], metrics) \
            if len(metrics) > 0 else [to_numpy(l) for l in losses]

    def eval_batch(self, inputs, labels=None):
751
        self.model.network.eval()
752 753
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
754
        self._input_info = _update_input_info(inputs)
755 756 757
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

Z
zhangchunle 已提交
758
        outputs = self.model.network.forward(*[to_variable(x) for x in inputs])
759 760
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
761 762
            losses = to_list(losses)

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
            if self.model._test_dataloader is not None and self._nranks > 1 \
                    and isinstance(self.model._test_dataloader, DataLoader):
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
                        o[:int(total_size - current_count)] for o in outputs
                    ]
                    labels = [
                        l[:int(total_size - current_count)] for l in labels
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

788
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
789
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
790 791
            metrics.append(m)

792
        if self.model._loss and len(metrics):
793
            return [to_numpy(l) for l in losses], metrics
794
        elif self.model._loss:
795 796 797
            return [to_numpy(l) for l in losses]
        else:
            return metrics
798

799
    def predict_batch(self, inputs):
800
        self.model.network.eval()
801 802
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
803
        self._input_info = _update_input_info(inputs)
804
        outputs = self.model.network.forward(*inputs)
805 806 807 808 809 810
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
811
        return self.model.network.parameters(*args, **kwargs)
812 813

    def save(self, path):
814
        params = self.model.network.state_dict()
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
        fluid.save_dygraph(params, path)
        if self.model._optimizer is None:
            return
        if self.model._optimizer.state_dict():
            optim = self.model._optimizer.state_dict()
            fluid.save_dygraph(optim, path)

    def load(self, param_state_pairs, optim_state):
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

831 832
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
833 834 835 836 837 838 839 840 841 842 843
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
        opt_name = opt_unq_name[:opt_unq_name.rfind("_")]  # remove suffix idx
844
        param_names = [param.name for param in self.model.network.parameters()]
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
        for var_name, state_var in sorted(
                optim_state.items(), key=lambda x: len(x[0]), reverse=True):
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
                    converted_state["global_step"] = np.array(
                        converted_state.pop("@LR_DECAY_COUNTER@")) + 1
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
                        accum_name = var_name[len(param_name + "_" + opt_name +
                                                  "_"):]
                    elif var_name.startswith(param_name +
                                             "_") and opt_name == opt_cls_name:
                        # when init optimizer without name
                        accum_name = var_name[len(param_name + "_"):]
                    else:
                        continue
                    # remove suffix idx
                    accum_name = accum_name[:accum_name.rfind("_")]
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
                    dy_state_name = (param_name + "_" + opt_unq_name + "_" +
                                     accum_name + "_0")
                    converted_state[dy_state_name] = state_var

876 877
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
878
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
879 880 881 882
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
883 884


885
class Model(object):
886 887 888
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
889
    switched by `paddle.enable_static()`. The usage is as follows.
890
    But note, the switching between dynamic and static should be before
891
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
892
    must be required for static graph.
893

J
Jiaqi Liu 已提交
894 895 896 897 898
    When training on GPU, auto mixed precision (AMP) training is supported, and
    pure float16 training is also supported in static mode while using Adam,
    AdamW and Momentum optimizer. Before using pure float16 training,
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
899 900 901 902
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
903

904
    Args:
905 906
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
907 908
        inputs (InputSpec|list|tuple|dict|None): `inputs`, entry points of network,
            could be a InputSpec instance, or list/tuple of InputSpec instances,
909 910
            or dict ({name: InputSpec}), and it couldn't be None in static
            graph.
911 912
        labels (InputSpec|list|tuple|None): `labels`, entry points of network,
            could be a InputSpec instnace or list/tuple of InputSpec instances,
913
            or None. For static graph, if labels is required in loss,
914 915 916
            labels must be set. Otherwise, it could be None.


917
    Examples:
J
Jiaqi Liu 已提交
918 919
        1. A common example

920 921
        .. code-block:: python

922 923 924 925 926 927
          import paddle
          import paddle.nn as nn
          import paddle.vision.transforms as T
          from paddle.static import InputSpec
  
          device = paddle.set_device('cpu') # or 'gpu'
J
Jiaqi Liu 已提交
928

929 930 931 932 933 934 935 936 937 938 939 940 941
          net = nn.Sequential(
              nn.Flatten(1),
              nn.Linear(784, 200),
              nn.Tanh(),
              nn.Linear(200, 10))
  
          # inputs and labels are not required for dynamic graph.
          input = InputSpec([None, 784], 'float32', 'x')
          label = InputSpec([None, 1], 'int64', 'label')
          
          model = paddle.Model(net, input, label)
          optim = paddle.optimizer.SGD(learning_rate=1e-3,
              parameters=model.parameters())
J
Jiaqi Liu 已提交
942

943 944 945 946 947 948 949 950 951 952
          model.prepare(optim,
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
          
          transform = T.Compose([
              T.Transpose(),
              T.Normalize([127.5], [127.5])
          ])
          data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
          model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985


        2. An example using mixed precision training.

        .. code-block:: python

          import paddle
          import paddle.nn as nn
          import paddle.vision.transforms as T

          def run_example_code():
            device = paddle.set_device('gpu')

            net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                nn.Linear(200, 10))

            model = paddle.Model(net)
            optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())

            amp_configs = {
                "level": "O1",
                "custom_white_list": {'conv2d'},
                "use_dynamic_loss_scaling": True
            }
            model.prepare(optim,
                paddle.nn.CrossEntropyLoss(),
                paddle.metric.Accuracy(),
                amp_configs=amp_configs)

            transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)

986
          # mixed precision training is only supported on GPU now.
J
Jiaqi Liu 已提交
987 988 989
          if paddle.is_compiled_with_cuda():
            run_example_code()

990 991
    """

992
    def __init__(self, network, inputs=None, labels=None):
993
        self.mode = 'train'
994
        self.network = network
995 996
        self._inputs = None
        self._labels = None
997
        self._loss = None
998 999
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1000
        self._input_info = None
1001
        self._is_shape_inferred = False
1002
        self._test_dataloader = None
L
LiuChiachi 已提交
1003
        self.stop_training = False
1004

1005
        if not in_dygraph_mode():
1006
            if not isinstance(inputs, (list, tuple, dict, Input)):
1007
                raise TypeError(
1008 1009
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1010
        elif inputs:
L
LiuChiachi 已提交
1011
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1012

1013
        self._inputs = self._verify_spec(inputs, is_input=True)
1014
        self._labels = self._verify_spec(labels)
1015

1016 1017 1018 1019 1020 1021
        # init backend
        if fluid.in_dygraph_mode():
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1022
    def train_batch(self, inputs, labels=None, update=True):
1023 1024 1025 1026
        """
        Run one training step on a batch of data.

        Args:
1027 1028 1029 1030 1031 1032 1033
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
            labels (numpy.ndarray|Tensor|list): Batch of labels. It could be 
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
                set None. Default is None.
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
              import numpy as np
1045
              import paddle
1046 1047
              import paddle.nn as nn
              from paddle.static import InputSpec
1048

1049
              device = paddle.set_device('cpu') # or 'gpu'
1050

1051 1052 1053 1054 1055 1056 1057 1058
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10))

              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
              model = paddle.Model(net, input, label)
1059
              optim = paddle.optimizer.SGD(learning_rate=1e-3,
1060
                  parameters=model.parameters())
1061
              model.prepare(optim, paddle.nn.CrossEntropyLoss())
1062 1063 1064 1065 1066
              data = np.random.random(size=(4,784)).astype(np.float32)
              label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
              loss = model.train_batch([data], [label])
              print(loss)
        """
L
lyuwenyu 已提交
1067
        loss = self._adapter.train_batch(inputs, labels, update)
L
LiuChiachi 已提交
1068
        if fluid.in_dygraph_mode() and self._input_info is None:
L
LiuChiachi 已提交
1069
            self._update_inputs()
1070
        return loss
1071

1072
    @paddle.no_grad()
1073 1074 1075 1076 1077
    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
1078 1079 1080 1081 1082 1083 1084
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
            labels (numpy.ndarray|Tensor|list): Batch of labels. It could be 
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
                set None. Default is None.
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
              import numpy as np
1096
              import paddle
1097 1098
              import paddle.nn as nn
              from paddle.static import InputSpec
1099

1100
              device = paddle.set_device('cpu') # or 'gpu'
1101

1102 1103 1104 1105 1106 1107 1108 1109
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10))

              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
              model = paddle.Model(net, input, label)
1110
              optim = paddle.optimizer.SGD(learning_rate=1e-3,
1111
                  parameters=model.parameters())
1112
              model.prepare(optim,
1113
                            paddle.nn.CrossEntropyLoss())
1114 1115 1116 1117 1118
              data = np.random.random(size=(4,784)).astype(np.float32)
              label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
              loss = model.eval_batch([data], [label])
              print(loss)
        """
1119
        loss = self._adapter.eval_batch(inputs, labels)
L
LiuChiachi 已提交
1120
        if fluid.in_dygraph_mode() and self._input_info is None:
L
LiuChiachi 已提交
1121
            self._update_inputs()
1122
        return loss
1123

1124
    @paddle.no_grad()
1125
    def predict_batch(self, inputs):
1126
        """
1127
        Run one predicting step on a batch of data.
1128 1129

        Args:
1130 1131 1132
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
            
              import numpy as np
1143
              import paddle
1144
              import paddle.nn as nn
L
LielinJiang 已提交
1145
              from paddle.static import InputSpec
1146

1147
              device = paddle.set_device('cpu') # or 'gpu'
L
LielinJiang 已提交
1148 1149 1150
              
              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
1151

1152 1153 1154 1155 1156 1157
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10),
                  nn.Softmax())

L
LielinJiang 已提交
1158
              model = paddle.Model(net, input, label)
1159
              model.prepare()
1160
              data = np.random.random(size=(4,784)).astype(np.float32)
1161
              out = model.predict_batch([data])
1162 1163
              print(out)
        """
1164
        loss = self._adapter.predict_batch(inputs)
L
LiuChiachi 已提交
1165
        if fluid.in_dygraph_mode() and self._input_info is None:
L
LiuChiachi 已提交
1166
            self._update_inputs()
1167
        return loss
1168

1169 1170 1171 1172 1173
    def save(self, path, training=True):
        """  
        This function saves parameters, optimizer information or model and 
        paramters only for inference to path. It depends on the parameter
        `training`.
1174

1175 1176
        If `training` is set to True, the parameters saved contain all 
        the trainable Variable, will save to a file with suffix ".pdparams".
1177 1178 1179 1180
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1181
        This function will silently overwrite existing file at the target location.
1182

1183
        If `training` is set to False, only inference model will be saved.
1184 1185

        Args:
1186 1187 1188
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1189 1190
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1191 1192 1193 1194 1195 1196 1197

        Returns:
            None

        Examples:

            .. code-block:: python
1198

1199
                import paddle
1200
                import paddle.nn as nn
1201
                import paddle.vision.transforms as T
1202
                from paddle.static import InputSpec
1203

1204
                class Mnist(nn.Layer):
1205
                    def __init__(self):
1206
                        super(Mnist, self).__init__()
1207
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1208
                            nn.Flatten(1),
1209 1210 1211 1212
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1213

1214
                    def forward(self, x):
1215
                        return self.net(x)
1216

1217
                dynamic = True  # False
1218
                # if use static graph, do not set
1219 1220
                if not dynamic:
                    paddle.enable_static()
1221

1222 1223 1224
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1225
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1226
                    parameters=model.parameters())
1227
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1228 1229 1230 1231 1232 1233 1234
                
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                
1235
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1236 1237
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1238
        """
1239

1240
        if ParallelEnv().local_rank == 0:
1241 1242 1243 1244
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
            skip_mismatch (bool): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
                mismatch shape).
            reset_optimizer (bool): If True, ignore the providing file storing
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
                a optimizer has been set to the model. Default False.

        Returns:
            None

        Examples:

            .. code-block:: python
            
1279
              import paddle
1280
              import paddle.nn as nn
L
LielinJiang 已提交
1281 1282
              from paddle.static import InputSpec

1283
              device = paddle.set_device('cpu')
L
LielinJiang 已提交
1284 1285

              input = InputSpec([None, 784], 'float32', 'x')
1286 1287 1288 1289 1290

              model = paddle.Model(nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10),
L
LielinJiang 已提交
1291 1292
                  nn.Softmax()), input)

1293
              model.save('checkpoint/test')
1294 1295 1296 1297 1298 1299 1300
              model.load('checkpoint/test')
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1301
                return pickle.load(f, encoding='latin1')
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
                    "{} is not found in the providing file.".format(key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
            assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
                    "Unknown postfix {} from weights".format(ext)
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1325
        for key, param in self.network.state_dict().items():
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
                        ("Skip loading for {}. ".format(key) + str(err)))
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

        optim_state = None if reset_optimizer else _load_state_from_path(
            path + ".pdopt")
        return self._adapter.load(matched_param_state, optim_state)

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python

1354
              import paddle
1355
              import paddle.nn as nn
L
LielinJiang 已提交
1356
              from paddle.static import InputSpec
1357

L
LielinJiang 已提交
1358 1359
              input = InputSpec([None, 784], 'float32', 'x')
              
1360 1361 1362
              model = paddle.Model(nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
L
LielinJiang 已提交
1363 1364
                  nn.Linear(200, 10)), input)

1365 1366 1367 1368
              params = model.parameters()
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1369 1370 1371 1372 1373
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
            if self._adapter._amp_level == "O2":
                if in_dygraph_mode():
1374 1375 1376
                    warnings.warn(
                        "Pure float16 training is not supported in dygraph mode now, and it will be supported in future version."
                    )
J
Jiaqi Liu 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
                else:
                    # grad clip is not supported in pure fp16 training now
                    assert self._optimizer._grad_clip is None, \
                        "Grad clip is not supported in pure float16 training now, and it will be supported in future version."

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'.")
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'.")
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1410
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
                    'custom_white_list', 'custom_black_list',
                    'custom_black_varnames'
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
                        param_name]
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1438 1439
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".
                    format(tuple(amp_config_key_set - accepted_param_set)))
J
Jiaqi Liu 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

            if 'use_fp16_guard' in amp_config_key_set:
                if in_dygraph_mode():
                    raise ValueError(
                        "'use_fp16_guard' is supported in static mode only.")
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

    def prepare(self, optimizer=None, loss=None, metrics=None,
                amp_configs=None):
1456 1457 1458 1459 1460 1461 1462
        """
        Configures the model before runing.

        Args:
            optimizer (Optimizer|None): Optimizer must be set in training
                and should be a Optimizer instance. It can be None in eval
                and test mode.
1463 1464
            loss (Loss|callable function|None): Loss function can
                be a `paddle.nn.Layer` instance or any callable function
1465 1466
                taken the predicted values and ground truth values as input.
                It can be None when there is no loss.
1467 1468
            metrics (Metric|list of Metric|None): If metrics is set, all
                metrics will be calculated and output in train/eval mode.
J
Jiaqi Liu 已提交
1469 1470 1471 1472
            amp_configs (str|dict|None): AMP configurations. If AMP or pure
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1473 1474
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1475 1476 1477 1478
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1479 1480 1481 1482 1483 1484
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1485 1486 1487 1488
        Returns:
            None
        """

1489 1490
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1491 1492 1493 1494 1495 1496 1497
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
                if fluid.in_dygraph_mode():
                    main_prog_seed = fluid.default_main_program().random_seed
                    startup_prog_seed = fluid.default_startup_program(
                    ).random_seed
                    fluid.disable_dygraph()
1498
                    paddle.disable_static(self._place)
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
                    fluid.default_startup_program(
                    ).random_seed = startup_prog_seed
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1509 1510
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1511 1512 1513
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1514
        self._loss = loss
1515 1516 1517 1518 1519 1520 1521

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1522
        self._prepare_amp(amp_configs)
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

        if not in_dygraph_mode():
            self._adapter.prepare()

    def fit(
            self,
            train_data=None,
            eval_data=None,
            batch_size=1,
            epochs=1,
            eval_freq=1,
            log_freq=10,
            save_dir=None,
            save_freq=1,
            verbose=2,
            drop_last=False,
            shuffle=True,
            num_workers=0,
L
update  
lyuwenyu 已提交
1541
            callbacks=None,
L
lyuwenyu 已提交
1542
            accumulate=1, ):
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset|DataLoader): An iterable data loader is used for 
                train. An instance of paddle paddle.io.Dataset or 
                paddle.io.Dataloader is recomended. Default: None.
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation at the end of epoch. If None, will not do evaluation. 
                An instance of paddle.io.Dataset or paddle.io.Dataloader 
                is recomended. Default: None.
            batch_size (int): Integer number. The batch size of train_data
                and eval_data. When train_data and eval_data are both the
                instance of Dataloader, this parameter will be ignored.
                Default: 1.
            epochs (int): Integer number. The number of epochs to train
                the model. Default: 1.
            eval_freq (int): The frequency, in number of epochs, an evalutation
                is performed. Default: 1.
            log_freq (int): The frequency, in number of steps, the training logs
                are printed. Default: 10.
            save_dir(str|None): The directory to save checkpoint during training.
                If None, will not save checkpoint. Default: None.
            save_freq (int): The frequency, in number of epochs, to save
                checkpoint. Default: 1.
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per epoch. Default: 2.
            drop_last (bool): Whether drop the last incomplete batch of
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
            shuffle (bool): Whther to shuffle train_data. When train_data is
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
            num_workers (int): The number of subprocess to load data, 0 for no
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
            callbacks (Callback|None): A list of `Callback` instances to apply
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
L
lyuwenyu 已提交
1585 1586
            accumulate (int): The number of steps to accumulate gradident in training process before optimizer update. Using this to mimic large batch size. Default: 1.
            
1587 1588 1589 1590 1591 1592 1593 1594 1595
        Returns:
            None

        Examples:
            1. An example use Dataset and set btch size, shuffle in fit.
               How to make a batch is done internally.

            .. code-block:: python

1596
              import paddle
1597
              import paddle.vision.transforms as T
1598
              from paddle.vision.datasets import MNIST
1599
              from paddle.static import InputSpec
1600 1601

              dynamic = True
1602 1603 1604
              if not dynamic:
                  paddle.enable_static()

1605 1606 1607 1608
              transform = T.Compose([
                  T.Transpose(),
                  T.Normalize([127.5], [127.5])
              ])
1609 1610
              train_dataset = MNIST(mode='train', transform=transform)
              val_dataset = MNIST(mode='test', transform=transform)
1611
           
1612 1613
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
1614
           
1615
              model = paddle.Model(
L
LielinJiang 已提交
1616
                  paddle.vision.models.LeNet(),
1617
                  input, label)
1618 1619
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
1620 1621
              model.prepare(
                  optim,
1622
                  paddle.nn.CrossEntropyLoss(),
1623
                  paddle.metric.Accuracy(topk=(1, 2)))
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
              model.fit(train_dataset,
                        val_dataset,
                        epochs=2,
                        batch_size=64,
                        save_dir='mnist_checkpoint')

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python

1635
              import paddle
1636
              import paddle.vision.transforms as T
1637
              from paddle.vision.datasets import MNIST
1638
              from paddle.static import InputSpec
1639 1640

              dynamic = True
1641 1642
              if not dynamic:
                  paddle.enable_static()
1643 1644 1645 1646 1647
              
              transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
1648
              train_dataset = MNIST(mode='train', transform=transform)
1649
              train_loader = paddle.io.DataLoader(train_dataset,
1650 1651
                  batch_size=64)
              val_dataset = MNIST(mode='test', transform=transform)
1652
              val_loader = paddle.io.DataLoader(val_dataset,
1653
                  batch_size=64)
1654
           
1655 1656
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
1657
           
1658
              model = paddle.Model(
L
LielinJiang 已提交
1659
                  paddle.vision.models.LeNet(), input, label)
1660 1661
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
1662 1663
              model.prepare(
                  optim,
1664
                  paddle.nn.CrossEntropyLoss(),
1665
                  paddle.metric.Accuracy(topk=(1, 2)))
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
              model.fit(train_loader,
                        val_loader,
                        epochs=2,
                        save_dir='mnist_checkpoint')
        """

        assert train_data is not None, \
                "train_data must be given!"

        if isinstance(train_data, Dataset):
            train_sampler = DistributedBatchSampler(
                train_data,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last)
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size)
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1706

L
lyuwenyu 已提交
1707
        self._accumulate = accumulate
L
update  
lyuwenyu 已提交
1708

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
        steps = self._len_data_loader(train_loader)
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(), )

L
LiuChiachi 已提交
1721 1722 1723
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
                cbks.on_begin('eval', {
                    'steps': eval_steps,
                    'metrics': self._metrics_name()
                })

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
L
LiuChiachi 已提交
1741 1742
                if self.stop_training:
                    break
1743 1744 1745

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    def evaluate(
            self,
            eval_data,
            batch_size=1,
            log_freq=10,
            verbose=2,
            num_workers=0,
            callbacks=None, ):
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation. An instance of paddle.io.Dataset or 
                paddle.io.Dataloader is recomended.
            batch_size (int): Integer number. The batch size of train_data
                and eval_data.  When eval_data is the instance of Dataloader,
                this argument will be ignored. Default: 1.
            log_freq (int): The frequency, in number of steps, the eval logs
                are printed. Default: 10.
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per epoch. Default: 2.
            num_workers (int): The number of subprocess to load data,
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
            callbacks (Callback|None): A list of `Callback` instances to apply
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1781 1782

          .. code-block:: python
1783

1784
            import paddle
1785
            import paddle.vision.transforms as T
1786
            from paddle.static import InputSpec
1787

1788
            # declarative mode
1789 1790 1791 1792 1793
            transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
            val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1794

1795 1796 1797
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            label = InputSpec([None, 1], 'int64', 'label')
            model = paddle.Model(paddle.vision.models.LeNet(), input, label)
1798
            model.prepare(metrics=paddle.metric.Accuracy())
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
            result = model.evaluate(val_dataset, batch_size=64)
            print(result)
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size)
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(), )

        eval_steps = self._len_data_loader(eval_loader)
        cbks.on_begin('eval',
                      {'steps': eval_steps,
                       'metrics': self._metrics_name()})

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

    def predict(self,
                test_data,
                batch_size=1,
                num_workers=0,
                stack_outputs=False,
1846
                verbose=1,
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
                callbacks=None):
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
            batch_size (int): Integer number. The batch size of train_data and eval_data.
                When train_data and eval_data are both the instance of Dataloader, this
                argument will be ignored. Default: 1.
            num_workers (int): The number of subprocess to load data, 0 for no subprocess 
                used and loading data in main process. When train_data and eval_data are
                both the instance of Dataloader, this argument will be ignored. Default: 0.
1861
            stack_outputs (bool): Whether stack output field like a batch, as for an output
1862 1863 1864 1865 1866
                filed of a sample is in shape [X, Y], test_data contains N samples, predict
                output field will be in shape [N, X, Y] if stack_output is True, and will
                be a length N list in shape [[X, Y], [X, Y], ....[X, Y]] if stack_outputs
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
1867 1868
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per batch. Default: 1.
1869
            callbacks(Callback): A Callback instance, default None.
1870

1871 1872 1873 1874
        Returns:
            list: output of models.

        Examples:
1875 1876

          .. code-block:: python
1877 1878

            import numpy as np
1879
            import paddle
1880
            from paddle.static import InputSpec
1881

1882
            class MnistDataset(paddle.vision.datasets.MNIST):
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
                def __init__(self, mode, return_label=True):
                    super(MnistDataset, self).__init__(mode=mode)
                    self.return_label = return_label

                def __getitem__(self, idx):
                    img = np.reshape(self.images[idx], [1, 28, 28])
                    if self.return_label:
                        return img, np.array(self.labels[idx]).astype('int64')
                    return img,

                def __len__(self):
                    return len(self.images)

            test_dataset = MnistDataset(mode='test', return_label=False)

L
LielinJiang 已提交
1898
            # imperative mode
1899 1900
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            model = paddle.Model(paddle.vision.models.LeNet(), input)
1901
            model.prepare()
1902
            result = model.predict(test_dataset, batch_size=64)
1903
            print(len(result[0]), result[0][0].shape)
1904

L
LielinJiang 已提交
1905
            # declarative mode
1906
            device = paddle.set_device('cpu')
L
LielinJiang 已提交
1907 1908 1909
            paddle.enable_static()
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            model = paddle.Model(paddle.vision.models.LeNet(), input)
1910
            model.prepare()
L
LielinJiang 已提交
1911

1912 1913
            result = model.predict(test_dataset, batch_size=64)
            print(len(result[0]), result[0][0].shape)
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
        """

        if test_data is not None and isinstance(test_data, Dataset):
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size)
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

1930
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
1931 1932 1933 1934

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

1935
        cbks.on_begin('predict', logs)
1936 1937 1938

        outputs = []

1939
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

1950
        cbks.on_end('predict', logs)
1951 1952
        return outputs

1953
    def _save_inference_model(self, path):
1954
        """
1955
        Save inference model can be used in static or dynamic mode.
1956 1957

        Args:
1958 1959
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
1960
        Returns:
1961
            None
1962 1963
        """

1964
        if fluid.in_dygraph_mode():
1965 1966
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
1967
                if self._input_info is None:  # No provided or inferred
1968
                    raise RuntimeError(
L
LiuChiachi 已提交
1969
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
1970 1971 1972 1973
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
L
LiuChiachi 已提交
1974 1975
                        % self._input_info[0])

1976
                paddle.jit.save(layer, path, input_spec=self._inputs)
1977

1978
        else:
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
                    "file_prefix is empty string.")

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1995 1996 1997 1998 1999 2000 2001 2002 2003
            prog = self._adapter._progs.get('test', None)
            assert prog, \
                "Model is not ready, please call `model.prepare()` first"

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2004 2005
            fluid.io.save_inference_model(
                model_path,
2006 2007 2008 2009 2010
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
2011
                params_filename=params_filename)
2012

L
update  
lyuwenyu 已提交
2013 2014 2015 2016 2017 2018
    def _run_one_epoch(
            self,
            data_loader,
            callbacks,
            mode,
            logs={}, ):
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
            # 4. custumed iterator yield seperated inputs and labels:
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2035

2036 2037 2038 2039 2040
            batch_size = data[0].shape()[0] if callable(data[
                0].shape) else data[0].shape[0]

            callbacks.on_batch_begin(mode, step, logs)

2041
            if mode != 'predict':
L
update  
lyuwenyu 已提交
2042

L
lyuwenyu 已提交
2043 2044 2045
                _inputs = [data[:len(self._inputs)], data[len(self._inputs):]]
                if mode == 'train':
                    _inputs.append((step + 1) % self._accumulate == 0)
L
update  
lyuwenyu 已提交
2046

L
lyuwenyu 已提交
2047
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2048

L
lyuwenyu 已提交
2049 2050 2051
                # outs = getattr(self, mode + '_batch')(data[:len(self._inputs)],
                #                                       data[len(self._inputs):])

2052
                if self._metrics and self._loss:
2053
                    metrics = [[l[0] for l in outs[0]]]
2054
                elif self._loss:
2055 2056 2057
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2068
                if self._inputs is not None:
2069
                    outs = self.predict_batch(data[:len(self._inputs)])
L
LielinJiang 已提交
2070
                else:
2071
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2072

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
                outputs.append(outs)

            logs['step'] = step
            if mode == 'train' or self._adapter._merge_count.get(
                    mode + '_batch', 0) <= 0:
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
        self._reset_metrics()

2085
        if mode == 'predict':
2086 2087 2088
            return logs, outputs
        return logs

L
LielinJiang 已提交
2089
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
        """Prints a string summary of the network.

        Args:
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor. 
                    if not set, input_size will get from ``self._inputs`` if network only have 
                    one input, input_size can be tuple or InputSpec. if model have multiple 
                    input, input_size must be a list which contain every input's shape. 
                    Default: None.
            dtypes (str, optional): if dtypes is None, 'float32' will be used, Default: None.

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python

              import paddle
              from paddle.static import InputSpec
           
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
           
2112
              model = paddle.Model(paddle.vision.models.LeNet(),
L
LielinJiang 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
                  input, label)
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
              model.prepare(
                  optim,
                  paddle.nn.CrossEntropyLoss())

              params_info = model.summary()
              print(params_info)

        """
2124 2125 2126 2127 2128 2129
        assert (input_size is not None or self._inputs is not None
                ), "'input_size' or 'self._input' must be set"
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
L
LielinJiang 已提交
2130
        return summary(self.network, _input_size, dtype)
L
LielinJiang 已提交
2131

L
LiuChiachi 已提交
2132
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2133 2134
        out_specs = []

2135 2136 2137 2138 2139 2140
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2141 2142 2143
                # While Saving inference model in dygraph, and providing inputs only in running.
                if shapes is not None and dtypes is not None and fluid.in_dygraph_mode(
                ):
2144 2145
                    out_specs = [
                        Input(
L
LiuChiachi 已提交
2146
                            name=n, dtype=dtypes[i], shape=shapes[i])
2147 2148 2149 2150 2151 2152 2153
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2154 2155 2156 2157 2158
            assert is_input is False
            out_specs = [
                specs[n] for n in extract_args(self.network.forward)
                if n != 'self'
            ]
2159 2160 2161 2162 2163 2164 2165 2166
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2167 2168
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
2169 2170 2171

        return out_specs

2172 2173 2174 2175 2176
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2177
        metrics_name = ['loss'] if self._loss else []
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2188 2189 2190

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2191 2192 2193 2194 2195
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
            self._inputs = self._verify_spec(None, self._input_info[0],
                                             self._input_info[1], True)
            self._is_shape_inferred = True