test_sum_op.py 25.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
18
import unittest
19
import tempfile
20 21
import numpy as np
from op_test import OpTest
22
import paddle
23
from paddle import enable_static
24
import paddle.fluid as fluid
T
tangwei12 已提交
25 26
import paddle.fluid.core as core
from paddle.fluid.op import Operator
27 28 29
from paddle.fluid.tests.unittests.op_test import (OpTest,
                                                  convert_float_to_uint16,
                                                  convert_uint16_to_float)
30
from paddle import _C_ops, _legacy_C_ops
31
from paddle.fluid.framework import _test_eager_guard
32
import paddle.inference as paddle_infer
33 34 35
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
36 37 38


class TestSumOp(OpTest):
39

40 41
    def setUp(self):
        self.op_type = "sum"
C
chengduo 已提交
42
        self.init_kernel_type()
43 44
        self.use_mkldnn = False
        self.init_kernel_type()
Z
zhupengyang 已提交
45 46 47
        x0 = np.random.random((3, 40)).astype(self.dtype)
        x1 = np.random.random((3, 40)).astype(self.dtype)
        x2 = np.random.random((3, 40)).astype(self.dtype)
48
        self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
49 50
        y = x0 + x1 + x2
        self.outputs = {'Out': y}
51
        self.attrs = {'use_mkldnn': self.use_mkldnn}
52

C
chengduo 已提交
53
    def init_kernel_type(self):
54
        self.dtype = np.float64
C
chengduo 已提交
55

56
    def test_check_output(self):
Q
qijun 已提交
57
        self.check_output()
58 59

    def test_check_grad(self):
Q
qijun 已提交
60
        self.check_grad(['x0'], 'Out')
61 62


63
class TestSelectedRowsSumOp(unittest.TestCase):
64

C
chengduo 已提交
65
    def setUp(self):
Q
qiaolongfei 已提交
66 67 68
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
69
        self.dtype = np.float64
C
chengduo 已提交
70
        self.init_kernel_type()
Q
qiaolongfei 已提交
71

C
chengduo 已提交
72
    def check_with_place(self, place, inplace):
Q
Qiao Longfei 已提交
73 74 75 76 77 78 79 80
        self.check_input_and_optput(core.Scope(), place, inplace, True, True,
                                    True)
        self.check_input_and_optput(core.Scope(), place, inplace, False, True,
                                    True)
        self.check_input_and_optput(core.Scope(), place, inplace, False, False,
                                    True)
        self.check_input_and_optput(core.Scope(), place, inplace, False, False,
                                    False)
T
tangwei12 已提交
81

C
chengduo 已提交
82
    def init_kernel_type(self):
C
chengduo 已提交
83
        pass
C
chengduo 已提交
84

C
chengduo 已提交
85 86 87 88
    def _get_array(self, rows, row_numel):
        array = np.ones((len(rows), row_numel)).astype(self.dtype)
        for i in range(len(rows)):
            array[i] *= rows[i]
Q
qiaolongfei 已提交
89 90
        return array

T
tangwei12 已提交
91 92 93
    def check_input_and_optput(self,
                               scope,
                               place,
Q
Qiao Longfei 已提交
94
                               inplace,
T
tangwei12 已提交
95 96 97 98 99 100 101
                               w1_has_data=False,
                               w2_has_data=False,
                               w3_has_data=False):

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)
T
tangwei12 已提交
102 103

        # create Out Variable
Q
Qiao Longfei 已提交
104 105 106 107 108
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()
T
tangwei12 已提交
109 110

        # create and run sum operator
Q
Qiao Longfei 已提交
111
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
T
tangwei12 已提交
112 113
        sum_op.run(scope, place)

T
tangwei12 已提交
114
        has_data_w_num = 0
Q
qiaolongfei 已提交
115 116
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
T
tangwei12 已提交
117
                has_data_w_num += 1
T
tangwei12 已提交
118

Q
qiaolongfei 已提交
119 120
        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
121 122 123
            np.testing.assert_array_equal(
                np.array(out.get_tensor()),
                self._get_array(self.rows, self.row_numel) * has_data_w_num)
Q
qiaolongfei 已提交
124 125
        else:
            self.assertEqual(len(out.rows()), 0)
T
tangwei12 已提交
126

Q
qiaolongfei 已提交
127
    def create_selected_rows(self, scope, place, var_name, has_data):
T
tangwei12 已提交
128
        # create and initialize W Variable
Q
qiaolongfei 已提交
129 130
        if has_data:
            rows = self.rows
T
tangwei12 已提交
131 132 133 134 135
        else:
            rows = []

        var = scope.var(var_name)
        w_selected_rows = var.get_selected_rows()
Q
qiaolongfei 已提交
136
        w_selected_rows.set_height(self.height)
T
tangwei12 已提交
137
        w_selected_rows.set_rows(rows)
C
chengduo 已提交
138
        w_array = self._get_array(self.rows, self.row_numel)
T
tangwei12 已提交
139 140 141 142 143 144 145
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        return var

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
Q
Qiao Longfei 已提交
146 147
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
T
tangwei12 已提交
148
        for place in places:
Q
Qiao Longfei 已提交
149 150
            for inplace in [True, False]:
                self.check_with_place(place, inplace)
T
tangwei12 已提交
151 152


153
class TestSelectedRowsSumOpInt(TestSelectedRowsSumOp):
154

155 156 157 158 159 160 161
    def init_kernel_type(self):
        self.dtype = np.int32


@unittest.skipIf(not core.supports_bfloat16(),
                 'place does not support BF16 evaluation')
class TestSelectedRowsSumBF16Op(TestSelectedRowsSumOp):
162

163 164 165 166 167 168 169
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
        self.dtype = np.uint16
        self.init_kernel_type()
        np.random.seed(12345)
170 171
        self.data = np.random.random(
            (len(self.rows), self.row_numel)).astype(np.float32)
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

    def _get_array(self, rows, row_numel):
        if len(rows) > 0:
            return convert_float_to_uint16(self.data)
        else:
            return np.ndarray((0, row_numel), dtype=self.dtype)

    def check_input_and_optput(self,
                               scope,
                               place,
                               inplace,
                               w1_has_data=False,
                               w2_has_data=False,
                               w3_has_data=False):

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)

        # create Out Variable
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()

        # create and run sum operator
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
        sum_op.run(scope, place)

        has_data_w_num = 0
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
                has_data_w_num += 1

        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
            out_bf16 = np.array(out.get_tensor())
            out_fp32 = convert_uint16_to_float(out_bf16)
            ref_fp32 = convert_uint16_to_float(
                self._get_array(self.rows, self.row_numel)) * has_data_w_num
            np.testing.assert_allclose(out_fp32, ref_fp32, atol=0, rtol=0.95e-2)
        else:
            self.assertEqual(len(out.rows()), 0)

    def test_w_is_selected_rows(self):
        for inplace in [True, False]:
            self.check_with_place(core.CPUPlace(), inplace)


L
lidanqing 已提交
222
class TestSelectedRowsSumBF16OpBigRow(TestSelectedRowsSumBF16Op):
223

L
lidanqing 已提交
224 225 226 227
    def init_kernel_type(self):
        self.row_numel = 102


C
chengduo 已提交
228
class TestLoDTensorAndSelectedRowsOp(TestSelectedRowsSumOp):
229

C
chengduo 已提交
230 231 232 233
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 2, 4, 5, 6]
234
        self.dtype = np.float64
C
chengduo 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

    def check_with_place(self, place, inplace):
        scope = core.Scope()
        if inplace:
            self.create_lod_tensor(scope, place, "x1")
            self.create_selected_rows(scope, place, "x2", True)
            out = scope.var("x1").get_tensor()
            out_name = "x1"
        else:
            self.create_selected_rows(scope, place, "x1", True)
            self.create_lod_tensor(scope, place, "x2")
            out = scope.var("out").get_tensor()
            out_name = "out"

        # create and run sum operator
        sum_op = Operator("sum", X=["x1", "x2"], Out=out_name)
        sum_op.run(scope, place)

        result = np.ones((1, self.height)).astype(np.int32).tolist()[0]
        for ele in self.rows:
            result[ele] += 1

        out_t = np.array(out)
        self.assertEqual(out_t.shape[0], self.height)
259 260 261 262
        np.testing.assert_array_equal(
            out_t,
            self._get_array([i for i in range(self.height)], self.row_numel) *
            np.tile(np.array(result).reshape(self.height, 1), self.row_numel))
C
chengduo 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275

    def create_lod_tensor(self, scope, place, var_name):
        var = scope.var(var_name)
        w_tensor = var.get_tensor()
        w_array = self._get_array([i for i in range(self.height)],
                                  self.row_numel)
        w_tensor.set(w_array, place)
        return var


#----------- test fp16 -----------
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
chengduo 已提交
276
class TestFP16SumOp(TestSumOp):
277

C
chengduo 已提交
278 279 280 281
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
C
chengduo 已提交
282 283 284
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=2e-2)
C
chengduo 已提交
285 286 287 288

    # FIXME: Because of the precision fp16, max_relative_error
    # should be 0.15 here.
    def test_check_grad(self):
C
chengduo 已提交
289 290 291
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad(['x0'], 'Out', max_relative_error=0.15)
C
chengduo 已提交
292 293


C
chengduo 已提交
294
def create_test_sum_fp16_class(parent):
295

C
chengduo 已提交
296 297 298
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestSumFp16Case(parent):
299

C
chengduo 已提交
300 301
        def init_kernel_type(self):
            self.dtype = np.float16
C
chengduo 已提交
302

C
chengduo 已提交
303
        def test_w_is_selected_rows(self):
C
chengduo 已提交
304 305 306 307 308
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                for inplace in [True, False]:
                    self.check_with_place(place, inplace)

C
chengduo 已提交
309 310 311 312 313
    cls_name = "{0}_{1}".format(parent.__name__, "SumFp16Test")
    TestSumFp16Case.__name__ = cls_name
    globals()[cls_name] = TestSumFp16Case


314 315
#----------- test bf16 -----------
class TestSumBF16Op(OpTest):
316

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    def setUp(self):
        self.op_type = "sum"
        self.init_kernel_type()
        x0 = np.random.random((3, 40)).astype(np.float32)
        x1 = np.random.random((3, 40)).astype(np.float32)
        x2 = np.random.random((3, 40)).astype(np.float32)
        y = x0 + x1 + x2
        self.inputs = {
            "X": [("x0", convert_float_to_uint16(x0)),
                  ("x1", convert_float_to_uint16(x1)),
                  ("x2", convert_float_to_uint16(x2))]
        }
        self.outputs = {'Out': convert_float_to_uint16(y)}

    def init_kernel_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out', numeric_grad_delta=0.5)


S
Steffy-zxf 已提交
341
class API_Test_Add_n(unittest.TestCase):
342

343 344
    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
345 346 347 348 349 350
            input0 = fluid.layers.fill_constant(shape=[2, 3],
                                                dtype='int64',
                                                value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3],
                                                dtype='int64',
                                                value=3)
351 352
            expected_result = np.empty((2, 3))
            expected_result.fill(8)
S
Steffy-zxf 已提交
353
            sum_value = paddle.add_n([input0, input1])
354 355 356
            exe = fluid.Executor(fluid.CPUPlace())
            result = exe.run(fetch_list=[sum_value])

S
Steffy-zxf 已提交
357 358 359 360 361 362 363 364 365
            self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            input0 = paddle.ones(shape=[2, 3], dtype='float32')
            expected_result = np.empty((2, 3))
            expected_result.fill(2)
            sum_value = paddle.add_n([input0, input0])

            self.assertEqual((sum_value.numpy() == expected_result).all(), True)
366

367
    def test_dygraph_api(self):
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
        with fluid.dygraph.guard():
            with _test_eager_guard():
                input0 = paddle.ones(shape=[2, 3], dtype='float32')
                input1 = paddle.ones(shape=[2, 3], dtype='float32')
                input0.stop_gradient = False
                input1.stop_gradient = False
                expected_result = np.empty((2, 3))
                expected_result.fill(2)
                sum_value = paddle.add_n([input0, input1])
                self.assertEqual((sum_value.numpy() == expected_result).all(),
                                 True)

                expected_grad_result = np.empty((2, 3))
                expected_grad_result.fill(1)
                sum_value.backward()
                self.assertEqual(
                    (input0.grad.numpy() == expected_grad_result).all(), True)
                self.assertEqual(
                    (input1.grad.numpy() == expected_grad_result).all(), True)

W
Weilong Wu 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    def test_add_n_and_add_and_grad(self):
        with fluid.dygraph.guard():
            np_x = np.array([[1, 2, 3], [4, 5, 6]])
            np_y = [[7, 8, 9], [10, 11, 12]]
            np_z = [[1, 1, 1], [1, 1, 1]]
            x = paddle.to_tensor(np_x, dtype='float32', stop_gradient=False)
            y = paddle.to_tensor(np_y, dtype='float32', stop_gradient=False)
            z = paddle.to_tensor(np_z, dtype='float32')

            out1 = x + z
            out2 = y + z
            out = paddle.add_n([out1, out2])

            dx, dy = paddle.grad([out], [x, y], create_graph=True)

            expected_out = np.array([[10., 12., 14.], [16., 18., 20.]])
            expected_dx = np.array([[1, 1, 1], [1, 1, 1]])
            expected_dy = np.array([[1, 1, 1], [1, 1, 1]])

407 408 409
            np.testing.assert_allclose(out, expected_out, rtol=1e-05)
            np.testing.assert_allclose(dx, expected_dx, rtol=1e-05)
            np.testing.assert_allclose(dy, expected_dy, rtol=1e-05)
W
Weilong Wu 已提交
410

411

412
class TestRaiseSumError(unittest.TestCase):
413

414
    def test_errors(self):
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        def test_type():
            fluid.layers.sum([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sum([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sum(data1)

        self.assertRaises(TypeError, test_dtype1)


class TestRaiseSumsError(unittest.TestCase):
436

437
    def test_errors(self):
438

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
        def test_type():
            fluid.layers.sums([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sums(data1)

        self.assertRaises(TypeError, test_dtype1)

        def test_out_type():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            fluid.layers.sums([data1, data2], out=[10])

        self.assertRaises(TypeError, test_out_type)

        def test_out_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            out = fluid.data(name="out", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2], out=out)

        self.assertRaises(TypeError, test_out_dtype)


L
Leo Chen 已提交
473
class TestSumOpError(unittest.TestCase):
474

L
Leo Chen 已提交
475
    def test_errors(self):
476

L
Leo Chen 已提交
477 478
        def test_empty_list_input():
            with fluid.dygraph.guard():
479
                fluid._legacy_C_ops.sum([])
L
Leo Chen 已提交
480 481 482

        def test_list_of_none_input():
            with fluid.dygraph.guard():
483
                fluid._legacy_C_ops.sum([None])
L
Leo Chen 已提交
484 485 486 487 488

        self.assertRaises(Exception, test_empty_list_input)
        self.assertRaises(Exception, test_list_of_none_input)


C
chengduo 已提交
489 490
create_test_sum_fp16_class(TestSelectedRowsSumOp)
create_test_sum_fp16_class(TestLoDTensorAndSelectedRowsOp)
C
chengduo 已提交
491

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

class TestReduceOPTensorAxisBase(unittest.TestCase):

    def setUp(self):
        paddle.disable_static()
        paddle.seed(2022)
        self.temp_dir = tempfile.TemporaryDirectory()
        self.save_path = os.path.join(self.temp_dir.name, 'reduce_tensor_axis')
        self.place = paddle.CUDAPlace(
            0) if paddle.is_compiled_with_cuda() else paddle.CPUPlace()
        self.keepdim = False
        self.init_data()

    def tearDwon(self):
        self.temp_dir.cleanup()

    def init_data(self):
        self.pd_api = paddle.sum
        self.np_api = np.sum
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array((1, 2), dtype='int64')
        self.tensor_axis = paddle.to_tensor(self.np_axis, dtype='int64')

    def test_dygraph(self):
        self.x.stop_gradient = False
        pd_out = self.pd_api(self.x, self.tensor_axis)
        np_out = self.np_api(self.x.numpy(), tuple(self.np_axis))
        np.testing.assert_allclose(
            pd_out.numpy() if pd_out.size > 1 else pd_out.item(), np_out)
        pd_out.backward()
        self.assertEqual(self.x.gradient().shape, tuple(self.x.shape))

    def test_static_and_infer(self):
        paddle.enable_static()
        main_prog = paddle.static.Program()
        starup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, starup_prog):
            # run static
            x = paddle.static.data(shape=self.x.shape,
                                   name='x',
                                   dtype='float32')
            if isinstance(self.tensor_axis, paddle.Tensor):
                axis = paddle.assign(self.np_axis)
            else:
                axis = []
                for i, item in enumerate(self.tensor_axis):
                    if isinstance(item, int):
                        axis.append(item)
                    else:
                        axis.append(paddle.full([1], self.np_axis[i], 'int64'))

            linear = paddle.nn.Linear(x.shape[-1], 5)
            linear_out = linear(x)
            out = self.pd_api(linear_out, axis, keepdim=self.keepdim)
            exe = paddle.static.Executor(self.place)
            exe.run(starup_prog)
            static_out = exe.run(feed={'x': self.x.numpy().astype('float32')},
                                 fetch_list=[out])

            # run infer
            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
            config = paddle_infer.Config(self.save_path + '.pdmodel',
                                         self.save_path + '.pdiparams')
            if paddle.is_compiled_with_cuda():
                config.enable_use_gpu(100, 0)
            else:
                config.disable_gpu()
            predictor = paddle_infer.create_predictor(config)
            input_names = predictor.get_input_names()
            input_handle = predictor.get_input_handle(input_names[0])
            fake_input = self.x.numpy().astype('float32')
            input_handle.reshape(self.x.shape)
            input_handle.copy_from_cpu(fake_input)
            predictor.run()
            output_names = predictor.get_output_names()
            output_handle = predictor.get_output_handle(output_names[0])
            infer_out = output_handle.copy_to_cpu()
            np.testing.assert_allclose(static_out[0], infer_out)


class TestSumWithTensorAxis1(TestReduceOPTensorAxisBase):

    def init_data(self):
        self.pd_api = paddle.sum
        self.np_api = np.sum
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
            paddle.to_tensor([2], 'int64')
        ]


586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
class TestAddNDoubleGradCheck(unittest.TestCase):

    def add_n_wrapper(self, x):
        return paddle.add_n(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [3, 4, 5], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [3, 4, 5], False, dtype)
        data2.persistable = True
        out = paddle.add_n([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)

        gradient_checker.double_grad_check([data1, data2],
                                           out,
                                           x_init=[data1_arr, data2_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(
            self.add_n_wrapper, [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAddNTripleGradCheck(unittest.TestCase):

    def add_n_wrapper(self, x):
        return paddle.add_n(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [3, 4, 5], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [3, 4, 5], False, dtype)
        data2.persistable = True
        out = paddle.add_n([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)

        gradient_checker.triple_grad_check([data1, data2],
                                           out,
                                           x_init=[data1_arr, data2_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(
            self.add_n_wrapper, [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
class TestSumDoubleGradCheck(unittest.TestCase):

    def sum_wrapper(self, x):
        return paddle.sum(x[0], axis=1, keepdim=True)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 4], False, dtype)
        data.persistable = True
        out = paddle.sum(data, axis=1, keepdim=True)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.sum_wrapper, [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestSumTripleGradCheck(unittest.TestCase):

    def sum_wrapper(self, x):
        return paddle.sum(x[0], axis=1, keepdim=True)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 4], False, dtype)
        data.persistable = True
        out = paddle.sum(data, axis=1, keepdim=True)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.sum_wrapper, [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
738
if __name__ == "__main__":
739
    enable_static()
740
    unittest.main()