未验证 提交 adab3c59 编写于 作者: C Charles-hit 提交者: GitHub

(cherry-pick)support some op backward refuse forward (#46201)

* add unit test for sum higher level op (#45961)

* support slice op backward refuse forward and add high level unit test (#45960)

* support tile op backward refuse forward (#45942)

* support expand_v2 op backward refuse forward (#45941)

* support concat backward refuse forward (#45940)
上级 7f0c1f0d
......@@ -404,11 +404,7 @@
forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x)
args : (Tensor[] grad_x_grad, Scalar axis = 0)
output : Tensor(grad_out_grad)
infer_meta :
func : ConcatInferMeta
param : [grad_x_grad, axis]
kernel :
func : concat
invoke : concat(grad_x_grad, axis)
- backward_op : concat_grad
forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
......@@ -771,10 +767,7 @@
forward : expand_grad (Tensor x, Tensor grad_out, IntArray shape) -> Tensor(grad_x)
args : (Tensor grad_x_grad, IntArray shape)
output : Tensor(grad_out_grad)
infer_meta :
func : ExpandInferMeta
kernel :
func : expand
invoke : expand(grad_x_grad, shape)
- backward_op : expand_grad
forward : expand (Tensor x, IntArray shape) -> Tensor(out)
......@@ -2145,11 +2138,7 @@
forward : slice_grad (Tensor input, Tensor grad_out, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(grad_input)
args : (Tensor grad_input_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
output : Tensor(grad_out_grad)
infer_meta :
func : UnchangedInferMeta
param : [grad_input_grad]
kernel :
func : slice
invoke : slice(grad_input_grad, axes, starts, ends, infer_flags, decrease_axis)
- backward_op : slice_grad
forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out)
......@@ -2507,10 +2496,7 @@
forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x)
args : (Tensor grad_x_grad, IntArray repeat_times)
output : Tensor(grad_out_grad)
infer_meta :
func : TileInferMeta
kernel :
func : tile
invoke : tile(grad_x_grad, repeat_times)
- backward_op : tile_grad
forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out)
......
......@@ -21,6 +21,9 @@ import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard, core
from paddle.fluid.framework import _test_eager_guard
import paddle
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
class TestConcatOp(OpTest):
......@@ -451,5 +454,83 @@ class TestConcatAPIWithLoDTensorArray(unittest.TestCase):
res[0], np.concatenate([self.x] * self.iter_num, axis=self.axis))
class TestConcatDoubleGradCheck(unittest.TestCase):
def concat_wrapper(self, x):
return paddle.concat(x)
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data1 = layers.data('data1', [2, 3], False, dtype)
data1.persistable = True
data2 = layers.data('data2', [2, 3], False, dtype)
data2.persistable = True
out = paddle.concat([data1, data2])
data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
gradient_checker.double_grad_check([data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(
self.concat_wrapper, [data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestConcatTripleGradCheck(unittest.TestCase):
def concat_wrapper(self, x):
return paddle.concat(x, 1)
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data1 = layers.data('data1', [2, 3, 4], False, dtype)
data1.persistable = True
data2 = layers.data('data2', [2, 3, 4], False, dtype)
data2.persistable = True
out = paddle.concat([data1, data2], 1)
data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
gradient_checker.double_grad_check([data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(
self.concat_wrapper, [data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == '__main__':
unittest.main()
......@@ -18,9 +18,12 @@ import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid import compiler, Program, program_guard, core
import paddle
from paddle.fluid.framework import _test_eager_guard
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
# Situation 1: shape is a list(without tensor)
......@@ -284,6 +287,80 @@ class TestExpandV2DygraphAPI(unittest.TestCase):
egr_expand_1.numpy())
class TestExpandDoubleGradCheck(unittest.TestCase):
def expand_wrapper(self, x):
return paddle.expand(x[0], [2, 3])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 3], False, dtype)
data.persistable = True
out = paddle.expand(data, [2, 3])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.double_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(self.expand_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestExpandTripleGradCheck(unittest.TestCase):
def expand_wrapper(self, x):
return paddle.expand(x[0], [2, 3])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 3], False, dtype)
data.persistable = True
out = paddle.expand(data, [2, 3])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.triple_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(self.expand_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
......@@ -22,6 +22,9 @@ import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle
from paddle.fluid.framework import _test_eager_guard, _enable_legacy_dygraph
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
paddle.enable_static()
......@@ -867,6 +870,92 @@ class TestImperativeCUDAPinnedInput(unittest.TestCase):
self.assertEqual(sliced.shape, [2, 70, 80])
class TestSliceDoubleGradCheck(unittest.TestCase):
def slice_wrapper(self, x):
return paddle.slice(x[0],
axes=[0, 1, 2],
starts=[-3, 0, 2],
ends=[3, 2, 4])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [4, 5, 6], False, dtype)
data.persistable = True
out = paddle.slice(data,
axes=[0, 1, 2],
starts=[-3, 0, 2],
ends=[3, 2, 4])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.double_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(self.slice_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestSliceTripleGradCheck(unittest.TestCase):
def slice_wrapper(self, x):
return paddle.slice(x[0],
axes=[0, 1, 2],
starts=[-3, 0, 2],
ends=[3, 2, 4])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [4, 5, 6], False, dtype)
data.persistable = True
out = paddle.slice(data,
axes=[0, 1, 2],
starts=[-3, 0, 2],
ends=[3, 2, 4])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.triple_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(self.slice_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
......@@ -663,6 +663,78 @@ class TestAddNTripleGradCheck(unittest.TestCase):
self.func(p)
class TestSumDoubleGradCheck(unittest.TestCase):
def sum_wrapper(self, x):
return paddle.sum(x[0], axis=1, keepdim=True)
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 4], False, dtype)
data.persistable = True
out = paddle.sum(data, axis=1, keepdim=True)
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.double_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(self.sum_wrapper, [data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestSumTripleGradCheck(unittest.TestCase):
def sum_wrapper(self, x):
return paddle.sum(x[0], axis=1, keepdim=True)
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [2, 4], False, dtype)
data.persistable = True
out = paddle.sum(data, axis=1, keepdim=True)
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.triple_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(self.sum_wrapper, [data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == "__main__":
enable_static()
unittest.main()
......@@ -19,7 +19,10 @@ import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid import compiler, Program, program_guard, core
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
#Situation 1: repeat_times is a list (without tensor)
......@@ -263,6 +266,80 @@ class TestTileAPI(unittest.TestCase):
assert np.array_equal(out_3.numpy(), np.tile(np_x, (2, 3)))
class TestTileDoubleGradCheck(unittest.TestCase):
def tile_wrapper(self, x):
return paddle.tile(x[0], [2, 1])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [1, 2], False, dtype)
data.persistable = True
out = paddle.tile(data, [2, 1])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.double_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(self.tile_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestTileTripleGradCheck(unittest.TestCase):
def tile_wrapper(self, x):
return paddle.tile(x[0], [2, 1])
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32
data = layers.data('data', [1, 2], False, dtype)
data.persistable = True
out = paddle.tile(data, [2, 1])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)
gradient_checker.triple_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(self.tile_wrapper,
[data],
out,
x_init=[data_arr],
place=place)
def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册