test_inference_nlp.cc 8.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <time.h>
#include <fstream>
#include <thread>  // NOLINT
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
#include "paddle/fluid/platform/cpu_helper.h"

#include "paddle/fluid/framework/feed_fetch_method.h"

DEFINE_string(model_path, "", "Directory of the inference model.");
DEFINE_string(data_file, "", "File of input index data.");
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
DEFINE_int32(num_threads, 1, "Number of threads should be used");
DECLARE_bool(use_mkldnn);
DECLARE_int32(paddle_num_threads);

inline double GetCurrentMs() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

// This function just give dummy data for recognize_digits model.
size_t DummyData(std::vector<paddle::framework::LoDTensor>* out) {
  paddle::framework::LoDTensor input;
  SetupTensor<float>(&input, {1, 1, 28, 28}, -1.f, 1.f);
  out->emplace_back(input);
  return 1;
}

// Load the input word index data from file and save into LodTensor.
// Return the size of words.
size_t LoadData(std::vector<paddle::framework::LoDTensor>* out,
                const std::string& filename) {
  if (filename.empty()) {
    return DummyData(out);
  }

  size_t sz = 0;
  std::fstream fin(filename);
  std::string line;
  out->clear();
  while (getline(fin, line)) {
    std::istringstream iss(line);
    std::vector<int64_t> ids;
    std::string field;
    while (getline(iss, field, ' ')) {
      ids.push_back(stoi(field));
    }
    if (ids.size() >= 1024) {
      // Synced with NLP guys, they will ignore input larger then 1024
      continue;
    }

    paddle::framework::LoDTensor words;
    paddle::framework::LoD lod{{0, ids.size()}};
    words.set_lod(lod);
    int64_t* pdata = words.mutable_data<int64_t>(
        {static_cast<int64_t>(ids.size()), 1}, paddle::platform::CPUPlace());
    memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t));
    out->emplace_back(words);
    sz += ids.size();
  }
  return sz;
}

// Split input data samples into small pieces jobs as balanced as possible,
// according to the number of threads.
void SplitData(
    const std::vector<paddle::framework::LoDTensor>& datasets,
    std::vector<std::vector<const paddle::framework::LoDTensor*>>* jobs,
    const int num_threads) {
  size_t s = 0;
  jobs->resize(num_threads);
  while (s < datasets.size()) {
    for (auto it = jobs->begin(); it != jobs->end(); it++) {
      it->emplace_back(&datasets[s]);
      s++;
      if (s >= datasets.size()) {
        break;
      }
    }
  }
}

void ThreadRunInfer(
    const int tid, paddle::framework::Scope* scope,
    const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) {
  // maybe framework:ProgramDesc is not thread-safe
  paddle::platform::CPUPlace place;
  paddle::framework::Executor executor(place);
  auto& sub_scope = scope->NewScope();
  auto inference_program =
      paddle::inference::Load(&executor, scope, FLAGS_model_path);

  auto ctx = executor.Prepare(*inference_program, /*block_id*/ 0);
  executor.CreateVariables(*inference_program, &sub_scope, /*block_id*/ 0);

  const std::vector<std::string>& feed_target_names =
      inference_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      inference_program->GetFetchTargetNames();

  PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
  paddle::framework::LoDTensor outtensor;
  fetch_targets[fetch_target_names[0]] = &outtensor;

  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);

  // map the data of feed_targets to feed_holder
  for (auto* op : inference_program->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
      paddle::framework::SetFeedVariable(scope, *feed_targets[feed_target_name],
                                         "feed", idx);
    }
  }

  auto& inputs = jobs[tid];
  auto start_ms = GetCurrentMs();
  for (size_t i = 0; i < inputs.size(); ++i) {
    feed_targets[feed_target_names[0]] = inputs[i];
    executor.RunPreparedContext(ctx.get(), &sub_scope,
                                false /*create_local_scope*/);
  }
  auto stop_ms = GetCurrentMs();

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : inference_program->Block(0).AllOps()) {
    if (op->Type() == "fetch") {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
      *fetch_targets[fetch_target_name] =
          paddle::framework::GetFetchVariable(*scope, "fetch", idx);
    }
  }

  scope->DeleteScope(&sub_scope);
  LOG(INFO) << "Tid: " << tid << ", process " << inputs.size()
            << " samples, avg time per sample: "
            << (stop_ms - start_ms) / inputs.size() << " ms";
}

TEST(inference, nlp) {
  if (FLAGS_model_path.empty()) {
    LOG(FATAL) << "Usage: ./example --model_path=path/to/your/model";
  }
  if (FLAGS_data_file.empty()) {
    LOG(WARNING) << "No data file provided, will use dummy data!"
                 << "Note: if you use nlp model, please provide data file.";
  }
  LOG(INFO) << "Model Path: " << FLAGS_model_path;
  LOG(INFO) << "Data File: " << FLAGS_data_file;

  std::vector<paddle::framework::LoDTensor> datasets;
  size_t num_total_words = LoadData(&datasets, FLAGS_data_file);
  LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size();
  LOG(INFO) << "Total number of words: " << num_total_words;

  // 0. Call `paddle::framework::InitDevices()` initialize all the devices
  std::unique_ptr<paddle::framework::Scope> scope(
      new paddle::framework::Scope());

  paddle::platform::SetNumThreads(FLAGS_paddle_num_threads);

  double start_ms = 0, stop_ms = 0;
  if (FLAGS_num_threads > 1) {
    std::vector<std::vector<const paddle::framework::LoDTensor*>> jobs;
    SplitData(datasets, &jobs, FLAGS_num_threads);
    std::vector<std::unique_ptr<std::thread>> threads;
    start_ms = GetCurrentMs();
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads.emplace_back(
          new std::thread(ThreadRunInfer, i, scope.get(), std::ref(jobs)));
    }
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads[i]->join();
    }
    stop_ms = GetCurrentMs();
  } else {
    // 1. Define place, executor, scope
    paddle::platform::CPUPlace place;
    paddle::framework::Executor executor(place);

    // 2. Initialize the inference_program and load parameters
    std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
    inference_program = InitProgram(&executor, scope.get(), FLAGS_model_path,
                                    /*model combined*/ false);
    // always prepare context
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
    ctx = executor.Prepare(*inference_program, 0);
    if (FLAGS_prepare_vars) {
      executor.CreateVariables(*inference_program, scope.get(), 0);
    }
    // preapre fetch
    const std::vector<std::string>& fetch_target_names =
        inference_program->GetFetchTargetNames();
    PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
    std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
    paddle::framework::LoDTensor outtensor;
    fetch_targets[fetch_target_names[0]] = &outtensor;

    // prepare feed
    const std::vector<std::string>& feed_target_names =
        inference_program->GetFeedTargetNames();
    PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);
    std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;

    // feed data and run
    start_ms = GetCurrentMs();
    for (size_t i = 0; i < datasets.size(); ++i) {
      feed_targets[feed_target_names[0]] = &(datasets[i]);
      executor.RunPreparedContext(ctx.get(), scope.get(), &feed_targets,
                                  &fetch_targets, !FLAGS_prepare_vars);
    }
    stop_ms = GetCurrentMs();
    LOG(INFO) << "Tid: 0, process " << datasets.size()
              << " samples, avg time per sample: "
              << (stop_ms - start_ms) / datasets.size() << " ms";
  }
  LOG(INFO) << "Total inference time with " << FLAGS_num_threads
            << " threads : " << (stop_ms - start_ms) / 1000.0
            << " sec, QPS: " << datasets.size() / ((stop_ms - start_ms) / 1000);
}