tracer.cc 12.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/tracer.h"

#include <memory>
#include <set>
#include <unordered_map>
#include <unordered_set>

#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace imperative {

void CreateGradOp(const framework::OpDesc& op_desc,
                  const std::unordered_set<std::string>& no_grad_set,
                  const std::vector<framework::BlockDesc*>& grad_sub_block,
                  std::vector<framework::OpDesc*>* grad_op_descs,
                  std::unordered_map<std::string, std::string>* grad_to_var) {
  PADDLE_ENFORCE(grad_op_descs->empty());
  const framework::OpInfo& op_info =
      framework::OpInfoMap::Instance().Get(op_desc.Type());
  if (!op_info.grad_op_maker_) return;

  std::vector<std::unique_ptr<framework::OpDesc>> descs =
      op_info.GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
  for (auto& desc : descs) {
    grad_op_descs->emplace_back(desc.release());
  }
}

void InitGrad(VarBase* var, platform::DeviceContext* dev_ctx) {
  PADDLE_ENFORCE_NOT_NULL(var, "Could not get valid var base");
  PADDLE_ENFORCE_NOT_NULL(dev_ctx,
                          "Could not get valid device from forward op");

  if (var->grads_ == nullptr) {
    auto& var_t = var->var_->Get<framework::LoDTensor>();
    var->grads_ = new VarBase(var->GradName(), framework::proto::VarType::FP32,
                              framework::vectorize(var_t.dims()),
                              dev_ctx->GetPlace(), true, false);
    auto grad_t = var->grads_->var_->GetMutable<framework::LoDTensor>();
    operators::math::set_constant(*dev_ctx, grad_t, 0.0);
  }
}

platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
  platform::Place result = place;
  for (auto it : inputs) {
    for (VarBase* var : it.second) {
      platform::Place tmp_place =
          var->var_->Get<framework::LoDTensor>().place();
      if (!platform::is_same_place(tmp_place, result)) {
        PADDLE_THROW(
            "Input variable should keep in the same place: %s, but get place: "
            "%s of input %s instead",
            result, tmp_place, it.first);
      }
    }
  }

  return result;
}

framework::VariableNameMap CreateInputVarNameMap(
    const OpBase* op, const VarBasePtrMap& varbase_map) {
  framework::VariableNameMap result;

  auto& info_map = framework::OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(op->Type());
  if (op_info == nullptr || op_info->proto_ == nullptr) {
    return result;
  }

  for (auto& in : op_info->Proto().inputs()) {
    auto it = varbase_map.find(in.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE(in.dispensable());
      result[in.name()] = {};
    } else {
      auto var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (VarBase* var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[in.name()] = args;
    }
  }
  return result;
}

framework::VariableNameMap CreateOutputVarNameMap(
    const OpBase* op, const VarBasePtrMap& varbase_map) {
  framework::VariableNameMap result;

  auto& info_map = framework::OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(op->Type());
  if (op_info == nullptr || op_info->proto_ == nullptr) {
    return result;
  }

  for (auto& out : op_info->Proto().outputs()) {
    auto it = varbase_map.find(out.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE(out.dispensable());
      result[out.name()] = {};
    } else {
      auto var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (VarBase* var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[out.name()] = args;
    }
  }
  return result;
}

Tracer::Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {}

std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
                                    VarBasePtrMap* outputs,
                                    framework::AttributeMap attrs_map,
                                    const platform::Place expected_place,
                                    const bool stop_gradient) {
  framework::VariableValueMap invars_map;
  framework::VariableValueMap outvars_map;

  // Construct input_vars_map and output_vars_map
  std::map<std::string, VarBase*> current_vars_map;
  op->input_vars_ = inputs;
  for (auto it : op->input_vars_) {
    auto& invars = invars_map[it.first];
    invars.reserve(it.second.size());
    for (VarBase* inp : it.second) {
      PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr", op->Type(),
                              inp->Name());

      invars.emplace_back(inp->var_);
      if (!stop_gradient) {
        current_vars_map[inp->Name()] = inp;
      }
      VLOG(3) << "input var name: " << inp->Name()
              << " inited: " << inp->var_->IsInitialized()
              << " stop_grad: " << inp->IsStopGradient();
    }
    op->TrackPreOp(it.first, it.second);
  }

  op->output_vars_ = *outputs;
  for (auto it : op->output_vars_) {
    auto& outvars = outvars_map[it.first];
    const std::vector<VarBase*>& outputs = it.second;
    outvars.reserve(outputs.size());
    for (size_t i = 0U; i < outputs.size(); ++i) {
      VarBase* out = outputs[i];
      outvars.emplace_back(out->var_);
      out->TrackPreOp(op, it.first, i, stop_gradient);
      if (!stop_gradient) {
        current_vars_map[out->Name()] = out;
      }

      VLOG(3) << "output var name: " << out->Name()
              << " inited: " << out->var_->IsInitialized()
              << " stop_grad: " << out->IsStopGradient();
    }
  }

  // Check attrs and create op
  framework::VariableNameMap invars_name_map =
      CreateInputVarNameMap(op, inputs);
  framework::VariableNameMap outvars_name_map =
      CreateOutputVarNameMap(op, *outputs);

  auto& info = framework::OpInfoMap::Instance().Get(op->Type());
  if (info.Checker() != nullptr) {
    info.Checker()->Check(&attrs_map);
  }

  std::unique_ptr<framework::OperatorBase> op_base =
      framework::OpRegistry::CreateOp(op->Type(), invars_name_map,
                                      outvars_name_map, attrs_map);

  if (info.infer_var_type_) {
    RuntimeInferVarTypeContext infer_var_type_ctx(&inputs, outputs, &attrs_map);
    info.infer_var_type_(&infer_var_type_ctx);
  }

  // TODO(minqiyang): Support infer var type in imperative mode
  // Run forward op
  VLOG(3) << "tracer running " << op->Type();
  framework::RuntimeContext ctx(invars_map, outvars_map);

  // TODO(panyx0718): Cache p.
  framework::OperatorWithKernel* op_kernel =
      dynamic_cast<framework::OperatorWithKernel*>(op_base.get());
  PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");

  framework::Scope scope;
  op->place_ = GetExpectedPlace(expected_place, inputs);

  PreparedOp prepared_op = PreparedOp::Prepare(ctx, *op_kernel, op->place_);
  prepared_op.op.RuntimeInferShape(scope, op->place_, ctx);
  prepared_op.func(
      framework::ExecutionContext(prepared_op.op, scope, *prepared_op.dev_ctx,
                                  prepared_op.ctx, prepared_op.kernel_configs));

  // construct backward op
  std::set<std::string> vars_saved_for_backward;
  if (!stop_gradient) {
    VLOG(5) << "start construct backward op";

    // construct grad op descs
    op->attrs_ = attrs_map;
    std::unique_ptr<framework::OpDesc> fwd_op_desc(new framework::OpDesc(
        op->Type(), invars_name_map, outvars_name_map, attrs_map));
    std::unique_ptr<std::unordered_map<std::string, std::string>> grad_to_var(
        new std::unordered_map<std::string, std::string>());
    // NOTE(minqiyang): We don't support control flow op in imperative now
    // Add grad_block_ when we want to support it
    CreateGradOp(*fwd_op_desc, {}, {}, &op->grad_op_descs_, grad_to_var.get());

    VLOG(5) << "create grad op desc: " << op->grad_op_descs_[0]->Type();

    const size_t grad_op_count = op->grad_op_descs_.size();

    op->grad_input_vars_.resize(grad_op_count);
    op->grad_output_vars_.resize(grad_op_count);

    for (size_t i = 0; i < grad_op_count; ++i) {
      framework::OpDesc* grad_op_desc = op->grad_op_descs_[i];
      for (auto it : grad_op_desc->Inputs()) {
        auto& grad_in_vars = op->grad_input_vars_[i][it.first];
        grad_in_vars.reserve(it.second.size());
        for (const std::string& grad_invar : it.second) {
          auto var_it = grad_to_var->find(grad_invar);
          if (var_it == grad_to_var->end()) {
            auto fwd_var_it = current_vars_map.find(grad_invar);
            PADDLE_ENFORCE(fwd_var_it != current_vars_map.end());
            // Forward inputs or outputs.
            grad_in_vars.emplace_back(fwd_var_it->second);
          } else {
            VarBase* var = current_vars_map[var_it->second];
            InitGrad(var, prepared_op.GetDeviceContext());
            // Douts.
            grad_in_vars.emplace_back(var->grads_);
          }

          vars_saved_for_backward.insert(it.first);
        }
      }

      for (auto it : grad_op_desc->Outputs()) {
        auto& grad_out_vars = op->grad_output_vars_[i][it.first];
        for (const std::string& grad_outvar : it.second) {
          auto var_it = grad_to_var->find(grad_outvar);
          PADDLE_ENFORCE(var_it != grad_to_var->end(),
                         "Could not found the grad op output var, should this "
                         "operator %s's stop gradient be True",
                         op->Type());
          VarBase* var = current_vars_map[var_it->second];
          InitGrad(var, prepared_op.GetDeviceContext());
          grad_out_vars.push_back(var->grads_);
          VLOG(3) << "grads output var name: " << var->name_;
        }
      }
    }
  }

  return vars_saved_for_backward;
}

std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
                                      const std::vector<VarBase*>& inputs,
                                      bool stop_gradient) {
  VLOG(3) << "py_trace " << op->Type();

  op->input_vars_[PyLayer::kFwdInp] = inputs;

  std::vector<framework::Variable*> ret_vars =
      PyLayer::Apply(op->forward_id_, inputs);

  op->TrackPreOp(PyLayer::kFwdInp, inputs);

  std::vector<VarBase*>& outputs = op->output_vars_[PyLayer::kFwdOut];
  outputs.reserve(ret_vars.size());
  for (size_t i = 0U; i != ret_vars.size(); ++i) {
    framework::Variable* v = ret_vars[i];
    VarBase* out = new VarBase(string::Sprintf("%s_out_%d", op->Type(), i), v,
                               nullptr, stop_gradient);
    outputs.emplace_back(out);
    out->TrackPreOp(op, PyLayer::kFwdOut, i, stop_gradient);
  }

  if (!stop_gradient) {
    VLOG(5) << "start construct backward op";
    op->grad_input_vars_.resize(1);
    op->grad_output_vars_.resize(1);
    auto& grad_input_vars =
        op->grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)];
    auto& grad_output_vars =
        op->grad_output_vars_[0][framework::GradVarName(PyLayer::kFwdOut)];

    for (VarBase* inp : inputs) {
      grad_input_vars.push_back(inp);
    }
    for (VarBase* out : outputs) {
      grad_input_vars.push_back(out);
    }

    // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
    platform::CPUPlace place;
    for (VarBase* out : outputs) {
      InitGrad(out, platform::DeviceContextPool::Instance().Get(place));
      grad_input_vars.push_back(out->grads_);
    }

    for (VarBase* inp : inputs) {
      InitGrad(inp, platform::DeviceContextPool::Instance().Get(place));
      grad_output_vars.push_back(inp->grads_);
    }
  }
  return outputs;
}

}  // namespace imperative
}  // namespace paddle