layer.h 16.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>            // NOLINT
#include <string>         // NOLINT
#include <vector>         // NOLINT
#include <memory>         // NOLINT
#include <unordered_map>  // NOLINT

#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/operators/math/math_function.h"

#include "paddle/fluid/imperative/type_defs.h"

namespace paddle {
namespace imperative {

class VarBase;

namespace py = ::pybind11;

class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx,
             std::vector<framework::KernelConfig>* kernel_configs)
      : op(op),
        ctx(ctx),
        func(func),
        dev_ctx(dev_ctx),
        kernel_configs(kernel_configs) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key =
        op.GetExpectedKernelType(framework::ExecutionContext(
            op, framework::Scope(), *dev_ctx, ctx, nullptr));
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    std::vector<framework::KernelConfig>* kernel_configs =
        op.GetKernelConfig(expected_kernel_key);
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx, kernel_configs);
  }

  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
  std::vector<framework::KernelConfig>* kernel_configs;
};

class OpBase;

/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
class VarBase {
 public:
  // Internal interface, create VarBase from exist variable
  VarBase(const std::string& name, framework::Variable* var, VarBase* grad,
          bool stop_gradient)
      : VarBase(name, var->Get<framework::LoDTensor>().type(),
                var->Get<framework::LoDTensor>().dims(),
                var->Get<framework::LoDTensor>().place(), var, grad,
                stop_gradient, false) {}

  // Python interface
  VarBase(const std::string& name, const framework::proto::VarType::Type dtype,
          const std::vector<int64_t>& shape, const platform::Place& place,
          bool stop_gradient, bool persistable)
      : VarBase(name, dtype, framework::make_ddim(shape), place, stop_gradient,
                persistable) {}

  // Internal interface, create VarBase from with ddim
  VarBase(const std::string& name, const framework::proto::VarType::Type dtype,
          const framework::DDim& shape, const platform::Place& place,
          bool stop_gradient, bool persistable)
      : VarBase(name, dtype, shape, place, nullptr, nullptr, stop_gradient,
                persistable) {}

 private:
  // TODO(minqiyang): need support SelectedRows
  VarBase(const std::string& name, framework::proto::VarType::Type dtype,
          const framework::DDim& shape, const platform::Place& place,
          framework::Variable* var, VarBase* grad, bool stop_gradient,
          bool persistable)
      : name_(name),
        type_(framework::proto::VarType::LOD_TENSOR),
        var_(var),
        grads_(grad),
        stop_gradient_(stop_gradient),
        persistable_(persistable),
        pre_op_(nullptr),
        pre_op_out_name_(),
        pre_op_out_idx_(-1) {
    if (!var_) {
      var_ = new framework::Variable();
    }
    auto tensor = var_->GetMutable<framework::LoDTensor>();
    tensor->Resize(shape);
    tensor->mutable_data(place, dtype);
    VLOG(10) << "create varbase: " << name_ << " type: " << dtype
             << " place: " << place;
  }

 public:
  virtual ~VarBase() {
    if (var_) {
      delete var_;
      var_ = nullptr;
    }

    if (grads_) {
      delete grads_;
      grads_ = nullptr;
    }

    pre_op_ = nullptr;
    pre_op_out_idx_ = -1;
  }

  inline void SetName(const std::string& name) { name_ = name; }
  inline std::string Name() const { return name_; }

  inline std::vector<int64_t> Shape() const {
    if (var_->IsInitialized()) {
      return framework::vectorize(var_->Get<framework::LoDTensor>().dims());
    } else {
      return {};
    }
  }

  inline framework::DDim Dims() const {
    return var_->Get<framework::LoDTensor>().dims();
  }

  // data type. e.g.. FP32
  inline void SetDataType(framework::proto::VarType::Type type) {
    auto tensor = var_->GetMutable<framework::LoDTensor>();
    tensor->mutable_data(tensor->place(), type);
  }
  inline framework::proto::VarType::Type DataType() const {
    auto tensor = var_->Get<framework::LoDTensor>();
    return tensor.type();
  }

  // tensor type. e.g.. LoDTensor
  inline void SetType(framework::proto::VarType::Type type) { type_ = type; }
  inline framework::proto::VarType::Type Type() const { return type_; }

  inline void SetStopGradient(bool stop_gradient) {
    stop_gradient_ = stop_gradient;
  }
  inline bool IsStopGradient() const { return stop_gradient_; }

  inline void SetPersistable(bool persistable) { persistable_ = persistable; }
  inline bool IsPersistable() const { return persistable_; }

  inline OpBase* PreOp() const { return pre_op_; }
  inline int PreOpOutIdx() const { return pre_op_out_idx_; }

  void RunBackward();

  inline void ResetPreOp(OpBase* op) {
    if (op == pre_op_) {
      // clear pre_op info when op equals to var's pre_op
      pre_op_ = nullptr;
      pre_op_out_idx_ = -1;
    }
  }

  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
                  int pre_op_out_idx, bool pre_op_stop_gradient) {
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
    if (pre_op_stop_gradient) {
      stop_gradient_ = pre_op_stop_gradient;
    }
  }

  void ClearGradient() {
    VLOG(1) << "clear gradient of " << Name();
    if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
      auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
      operators::math::set_constant(
          *(platform::DeviceContextPool::Instance().Get(
              grads_->var_->Get<framework::LoDTensor>().place())),
          grads_t, 0.0);
    }
  }

  framework::LoDTensor& GradValue();

  std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
                                      const bool blocking) const;

  inline std::string GradName() const {
    return string::Sprintf("%s@IGrad", Name());
  }

  std::string name_;
  framework::proto::VarType::Type type_;
  platform::Place place_;

  framework::Variable* var_;
  VarBase* grads_;

 private:
  bool stop_gradient_;
  bool persistable_;

  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
};

/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
class PYBIND11_HIDDEN OpBase {
 public:
  OpBase(const std::string& type)
      : type_(type),
        trace_id_(-1),
        forward_id_(-1),
        backward_id_(-1),
        place_(platform::CPUPlace()),
        backward_hooks_() {}

  virtual ~OpBase() {
    // TODO(minqiyang): remove op_desc from block_desc in tracer
    //
    // reset all output vars' pre op
    for (auto iter : output_vars_) {
      for (VarBase* var : iter.second) {
        var->ResetPreOp(this);
      }
    }

    // release resource
    for (framework::OpDesc* desc : grad_op_descs_) {
      delete desc;
    }
  }

  std::map<std::string, std::vector<VarBase*>> ApplyGrad();

  inline std::string Type() const { return type_; }
  inline std::string GradOpType(size_t index) const {
    PADDLE_ENFORCE_NOT_NULL(grad_op_descs_[index]);
    return grad_op_descs_[index]->Type();
  }

  void RegisterBackwardHooks(const py::object& callable, bool front = false);

  void InvokeBackwardHooks();

  void TrackPreOp(const std::string& inp_name,
                  const std::vector<VarBase*>& inputs) {
    auto& pre_ops_list = pre_ops_[inp_name];
    pre_ops_list.reserve(inputs.size());
    auto& pre_ops_out_idx_list = pre_ops_out_idx_[inp_name];
    for (VarBase* inp_var : inputs) {
      if (inp_var->PreOp() && !inp_var->IsStopGradient()) {
        VLOG(3) << "add pre op " << inp_var->PreOp()->Type() << " in slot "
                << inp_name;
        pre_ops_list.emplace_back(inp_var->PreOp());
        pre_ops_out_idx_list.push_back(inp_var->PreOpOutIdx());
      } else {
        VLOG(3) << "no pre op in slot " << inp_name
                << " input var stop_gradient: " << inp_var->IsStopGradient();
        pre_ops_list.emplace_back(nullptr);
        // pre_ops_out_idx_list.push_back(-1);
      }
    }
  }

  std::string type_;
  // One of `trace_id_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use trace_id_.
  int trace_id_;
  int forward_id_;

  // When has backward, one of `grad_op_descs_` or `backward_id_` is set,
  // not both.
  // Note: each fwd op corresponds to a vector of bwd ops.
  std::vector<framework::OpDesc*> grad_op_descs_;
  int backward_id_;

  platform::Place place_;

  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;

  // Inputs to a vector of bwd ops.
  std::vector<VarBasePtrMap> grad_input_vars_;
  // Outputs to a vector of bwd ops.
  std::vector<VarBasePtrMap> grad_output_vars_;

  std::vector<py::object> backward_hooks_;

  framework::AttributeMap attrs_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
};

class PyLayer {
 public:
  virtual ~PyLayer() {}

  static const char* kFwdInp;
  static const char* kFwdOut;

  static void RegisterFunc(int func_id, const py::object& py_func);

  static int NumFuncs();

  static std::vector<framework::Variable*> Apply(
      int func_id, const std::vector<VarBase*>& inputs);

  static std::vector<VarBase*> ApplyGrad(int func_id,
                                         const std::vector<VarBase*>& inputs);

 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<VarBase*>& ins);
};

// infer var type context for imperative mode
class PYBIND11_HIDDEN RuntimeInferVarTypeContext
    : public framework::InferVarTypeContext {
 public:
  RuntimeInferVarTypeContext(const imperative::VarBasePtrMap* inputs,
                             imperative::VarBasePtrMap* outputs,
                             const framework::AttributeMap* attrs_map)
      : InferVarTypeContext(nullptr, nullptr),
        inputs_(inputs),
        outputs_(outputs),
        attrs_(attrs_map),
        input_names_(),
        output_names_(),
        var_set_() {
    input_names_.reserve(inputs_->size());
    for (auto& it : *inputs_) {
      for (imperative::VarBase* var : it.second) {
        input_names_[it.first].emplace_back(var->Name());
        var_set_[var->Name()] = var;
      }
    }

    output_names_.reserve(outputs_->size());
    for (auto& it : *outputs_) {
      for (imperative::VarBase* var : it.second) {
        output_names_[it.first].emplace_back(var->Name());
        var_set_[var->Name()] = var;
      }
    }
  }

  virtual ~RuntimeInferVarTypeContext() {}

  framework::Attribute GetAttr(const std::string& name) const override {
    PADDLE_ENFORCE_NOT_NULL(attrs_);
    return attrs_->at(name);
  }

  bool HasVar(const std::string& name) const override {
    return var_set_.count(name) > 0;
  }

  bool HasInput(const std::string& name) const override {
    PADDLE_ENFORCE_NOT_NULL(inputs_);
    return inputs_->count(name) > 0;
  }

  bool HasOutput(const std::string& name) const override {
    PADDLE_ENFORCE_NOT_NULL(outputs_);
    return outputs_->count(name) > 0;
  }

  const std::vector<std::string>& Input(
      const std::string& name) const override {
    return input_names_.at(name);
  }

  const std::vector<std::string>& Output(
      const std::string& name) const override {
    return output_names_.at(name);
  }

  framework::proto::VarType::Type GetType(
      const std::string& name) const override {
    return var_set_.at(name)->Type();
  }

  void SetType(const std::string& name,
               framework::proto::VarType::Type type) override {
    if (name == "kLookupTablePath") {
      VLOG(2) << "SUPER UGLY FIX, remove this when move imperative mode in C++";
    } else {
      var_set_[name]->SetType(type);
    }
  }

  framework::proto::VarType::Type GetDataType(
      const std::string& name) const override {
    return var_set_.at(name)->DataType();
  }

  void SetDataType(const std::string& name,
                   framework::proto::VarType::Type type) override {
    var_set_[name]->SetDataType(type);
  }

  std::vector<framework::proto::VarType::Type> GetDataTypes(
      const std::string& name) const override {
    PADDLE_THROW("GetDataTypes is not supported in runtime InferVarType");
  }

  void SetDataTypes(const std::string& name,
                    const std::vector<framework::proto::VarType::Type>&
                        multiple_data_type) override {
    PADDLE_THROW("SetDataTypes is not supported in runtime InferVarType");
  }

  std::vector<int64_t> GetShape(const std::string& name) const override {
    PADDLE_THROW("Do not handle Shape in runtime InferVarType");
  }

  void SetShape(const std::string& name,
                const std::vector<int64_t>& dims) override {
    PADDLE_THROW("Do not handle Shape in runtime InferVarType");
  }

  int32_t GetLoDLevel(const std::string& name) const override {
    PADDLE_THROW("Do not handle LoDLevel in runtime InferVarType");
  }

  void SetLoDLevel(const std::string& name, int32_t lod_level) override {
    PADDLE_THROW("Do not handle LoDLevel in runtime InferVarType");
  }

 private:
  const imperative::VarBasePtrMap* inputs_;
  imperative::VarBasePtrMap* outputs_;
  const framework::AttributeMap* attrs_;
  std::unordered_map<std::string, std::vector<std::string>> input_names_;
  std::unordered_map<std::string, std::vector<std::string>> output_names_;
  std::unordered_map<std::string, imperative::VarBase*> var_set_;
};

}  // namespace imperative
}  // namespace paddle