var_handle.h 4.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <sstream>
#include <string>
#include <unordered_set>
#include <utility>

#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace framework {
namespace details {
class OpHandleBase;

// Wraps ir::Node and provide helper utilities.
// It's responsible for populating necessary fields of ir::Node.
//
// VarHandleBase is the var node in the dependency graph.
// A variable can only be generated by a single operator. i.e.
// This is a single assignment graph.
struct VarHandleBase {
  // Owned by `node`. No need to be deleted explicitly.
  explicit VarHandleBase(ir::Node* node) : node_(node) {
    node_->WrappedBy(this);
  }

  virtual ~VarHandleBase();

  virtual std::string DebugString() const = 0;
  virtual const std::string& Name() const = 0;

  void AddInput(OpHandleBase* in, ir::Node* node) {
    node_->inputs.clear();
    node_->inputs.push_back(node);
    generated_op_ = in;
  }

  void AddOutput(OpHandleBase* out, ir::Node* node) {
    if (pending_ops_.find(out) == pending_ops_.end()) {
      PADDLE_ENFORCE(out != nullptr, "The output of %s should not be nullptr",
                     this->Node()->Name());
      pending_ops_.insert(out);
      node_->outputs.push_back(node);
    }
  }

  void RemoveOutput(OpHandleBase* out, ir::Node* node) {
    pending_ops_.erase(out);
    node_->outputs.erase(
        std::remove(node_->outputs.begin(), node_->outputs.end(), node),
        node_->outputs.end());
  }

  void ClearGeneratedOp() {
    generated_op_ = nullptr;
    node_->inputs.clear();
  }

  OpHandleBase* GeneratedOp() { return generated_op_; }

  const std::unordered_set<OpHandleBase*>& PendingOps() const {
    return pending_ops_;
  }

  ir::Node* Node() { return node_; }

 protected:
  // The operator who generate this variable. nullptr if the variable
  // is a root node.
  OpHandleBase* generated_op_{nullptr};

  // Operators which depend on this variable ready.
  std::unordered_set<OpHandleBase*> pending_ops_;
  ir::Node* node_;
};

// VarHandle is actually a single version of Runtime Variable.
// Variable in Runtime mapped to many VarHandles in Graph.
// Each assignment will generate a new var handle with newer version.
//
// NOTE: runtime variables have place.
struct VarHandle : public VarHandleBase {
  virtual ~VarHandle();

  std::string DebugString() const override;

  VarHandle(ir::Node* node, size_t version, size_t scope_index,
            std::string name, platform::Place place)
      : VarHandleBase(node),
        version_(version),
        scope_idx_(scope_index),
        name_(std::move(name)),
        place_(std::move(place)) {}

#ifdef PADDLE_WITH_CUDA
  bool HasEvent() { return has_event_; }

  const cudaEvent_t& GetEvent() {
    PADDLE_ENFORCE(HasEvent(), "The event is not set.");
    return event_;
  }

  void SetGenerateEvent(const cudaEvent_t& event) {
    has_event_ = true;
    event_ = event;
  }
#endif

  // version field currently is not used, however, just store the version to
  // debug easily.
 private:
  size_t version_;
  size_t scope_idx_;
  std::string name_;
  platform::Place place_;
#ifdef PADDLE_WITH_CUDA
  // Only when this event is triggered, var is generated.
  cudaEvent_t event_;
  bool has_event_{false};
#endif

 public:
  bool IsTheSameVar(const VarHandle& o) const {
    return o.generated_op_ == generated_op_ && o.name_ == name_ &&
           o.scope_idx_ == scope_idx_;
  }

  size_t version() const { return version_; }
  size_t scope_idx() const { return scope_idx_; }
  const std::string& Name() const override { return name_; }
  const std::string& name() const { return name_; }
  const platform::Place& place() const { return place_; }
};

// Dummy Variable. It is used to represent dependencies between operators
struct DummyVarHandle : public VarHandleBase {
  explicit DummyVarHandle(ir::Node* node) : VarHandleBase(node) {}

  virtual ~DummyVarHandle();

  std::string DebugString() const override;

 public:
  const std::string& Name() const override { return name_; }
  std::string name_{"DummyVar"};
};

}  // namespace details
}  // namespace framework
}  // namespace paddle