op_handle_base.h 3.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <map>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/macros.h"

namespace paddle {
namespace framework {
namespace details {

constexpr char kLocalExecScopeName[] = "@LOCAL_EXE_SCOPE@";

// Wraps ir::Node and provide helper utilities.
// It's responsible for populating necessary fields of ir::Node.
class OpHandleBase {
 public:
  /**
   * NOTE(zjl): Some op should have higher priority than others.
   * The higher priority op would run first without switching
   * threads in Executor.
   */
  enum Priority { kHighest = 0, kNormal = 1 };

  // Owned by `node`. No need to be deleted explicitly.
  explicit OpHandleBase(ir::Node *node) : node_(node) {
    node_->WrappedBy(this);
  }

  virtual ~OpHandleBase();

  std::string DebugString() const;

  virtual Priority GetPriority() const { return kNormal; }

  virtual std::string Name() const = 0;

  void Run(bool use_cuda);

  virtual void RecordWaitEventOnCtx(platform::DeviceContext *waited_ctx);

  void AddInput(VarHandleBase *in);

  void AddOutput(VarHandleBase *out);

  // This method adds the wait events of all the input on all the device
  // context.
  // NODE: This Wait is asynchronous operation.
  virtual void WaitInputVarGenerated();

  // This method adds the wait events of all the input on the specified device
  // context.
  // NODE: This Wait is asynchronous operation.
  virtual void WaitInputVarGenerated(const platform::Place &place);

  virtual bool NeedWait(VarHandleBase *in_var);

  // If the Op involves data transfer of multiple devices that
  // will likely block other computations.
  virtual bool IsMultiDeviceTransfer() { return false; }

  const platform::DeviceContext *DeviceContext(platform::Place place) {
    auto it = dev_ctxes_.find(place);
    return it != dev_ctxes_.end() ? it->second : nullptr;
  }
  const std::map<platform::Place, platform::DeviceContext *> &DeviceContext() {
    return dev_ctxes_;
  }

  void SetDeviceContext(platform::Place place, platform::DeviceContext *ctx_) {
    dev_ctxes_[place] = ctx_;
  }

  const std::vector<VarHandleBase *> &Inputs() const { return inputs_; }

  size_t NoDupInputSize() const {
    std::unordered_set<VarHandleBase *> res;
    for (auto *var : inputs_) {
      res.emplace(var);
    }
    return res.size();
  }

  size_t NotReadyInputSize() const;

  const std::vector<VarHandleBase *> &Outputs() const { return outputs_; }

  size_t NoDummyInputSize() const;

  ir::Node *Node() { return node_; }

 protected:
  void RunAndRecordEvent(const std::function<void()> &callback);

  void RunAndRecordEvent(platform::Place p,
                         const std::function<void()> &callback);

  virtual void RunImpl() = 0;

  ir::Node *node_;
  std::vector<VarHandleBase *> inputs_;
  std::vector<VarHandleBase *> outputs_;
  std::map<platform::Place, platform::DeviceContext *> dev_ctxes_;

#ifdef PADDLE_WITH_CUDA
  std::unordered_map<int, cudaEvent_t> events_;
#endif

  DISABLE_COPY_AND_ASSIGN(OpHandleBase);
};

}  // namespace details
}  // namespace framework
}  // namespace paddle