fluid_benchmark.py 13.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import cProfile
import time
import os
import traceback

import numpy as np

import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
import paddle.fluid.transpiler.distribute_transpiler as distribute_transpiler

from args import *


def append_nccl2_prepare(trainer_id, startup_prog):
    if trainer_id >= 0:
        # append gen_nccl_id at the end of startup program
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        port = os.getenv("PADDLE_PSERVER_PORT")
        worker_ips = os.getenv("PADDLE_TRAINER_IPS")
        worker_endpoints = []
        for ip in worker_ips.split(","):
            worker_endpoints.append(':'.join([ip, port]))
        num_trainers = len(worker_endpoints)
        current_endpoint = os.getenv("PADDLE_CURRENT_IP") + ":" + port
        worker_endpoints.remove(current_endpoint)

        nccl_id_var = startup_prog.global_block().create_var(
            name="NCCLID",
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)
        startup_prog.global_block().append_op(
            type="gen_nccl_id",
            inputs={},
            outputs={"NCCLID": nccl_id_var},
            attrs={
                "endpoint": current_endpoint,
                "endpoint_list": worker_endpoints,
                "trainer_id": trainer_id
            })
        return nccl_id_var, num_trainers, trainer_id
    else:
        raise Exception("must set positive PADDLE_TRAINER_ID env variables for "
                        "nccl-based dist train.")


def dist_transpile(trainer_id, args, train_prog, startup_prog):
    if trainer_id < 0:
        return None, None

    # the port of all pservers, needed by both trainer and pserver
    port = os.getenv("PADDLE_PSERVER_PORT", "6174")
    # comma separated ips of all pservers, needed by trainer and
    # pserver
    pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
    eplist = []
    for ip in pserver_ips.split(","):
        eplist.append(':'.join([ip, port]))
    pserver_endpoints = ",".join(eplist)
    # total number of workers/trainers in the job, needed by
    # trainer and pserver
    trainers = int(os.getenv("PADDLE_TRAINERS"))
    # the IP of the local machine, needed by pserver only
    current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
    # the role, should be either PSERVER or TRAINER
    training_role = os.getenv("PADDLE_TRAINING_ROLE")

    config = fluid.DistributeTranspilerConfig()
    config.slice_var_up = not args.no_split_var
    config.min_block_size = 1048576
    t = distribute_transpiler.DistributeTranspiler(config=config)

    t.transpile(
        trainer_id,
        # NOTE: *MUST* use train_prog, for we are using with guard to
        # generate different program for train and test.
        program=train_prog,
        pservers=pserver_endpoints,
        trainers=trainers,
        sync_mode=not args.async_mode,
        startup_program=startup_prog)
    if training_role == "PSERVER":
        pserver_program = t.get_pserver_program(current_endpoint)
        pserver_startup_program = t.get_startup_program(
            current_endpoint, pserver_program, startup_program=startup_prog)
        return pserver_program, pserver_startup_program
    elif training_role == "TRAINER":
        train_program = t.get_trainer_program()
        return train_program, startup_prog
    else:
        raise ValueError(
            'PADDLE_TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
        )


def test_parallel(exe, test_args, args, test_prog, feeder):
    acc_evaluators = []
    for i in xrange(len(test_args[2])):
        acc_evaluators.append(fluid.metrics.Accuracy())

    to_fetch = [v.name for v in test_args[2]]
    if args.use_reader_op:
        test_args[4].start()
        while True:
            try:
                acc_rets = exe.run(fetch_list=to_fetch)
                for i, e in enumerate(acc_evaluators):
                    e.update(
                        value=np.array(acc_rets[i]), weight=args.batch_size)
            except fluid.core.EOFException as eof:
                test_args[4].reset()
                break
    else:
        for batch_id, data in enumerate(test_args[3]()):
            acc_rets = exe.run(feed=feeder.feed(data), fetch_list=to_fetch)
            for i, e in enumerate(acc_evaluators):
                e.update(value=np.array(acc_rets[i]), weight=len(data))

    return [e.eval() for e in acc_evaluators]


# NOTE: only need to benchmark using parallelexe
def train_parallel(train_args, test_args, args, train_prog, test_prog,
                   startup_prog, nccl_id_var, num_trainers, trainer_id):
    over_all_start = time.time()
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
    feeder = None
    if not args.use_reader_op:
        feed_var_list = [
            var for var in train_prog.global_block().vars.itervalues()
            if var.is_data
        ]
        feeder = fluid.DataFeeder(feed_var_list, place)
    # generate fake:
    if args.use_fake_data:
        for var in feed_var_list:
            v = startup_prog.global_block()._clone_variable(var)
            var.persistable = True
            v.persistable = True

            real_shape = list(var.shape)
            real_shape[0] = args.batch_size / args.gpus
            startup_prog.global_block().append_op(
                outputs={"Out": v},
                type="fill_constant",
                attrs={"shape": real_shape,
                       "value": 1.0,
                       "dtype": var.dtype})

    if nccl_id_var and trainer_id == 0:
        #FIXME(wuyi): wait other trainer to start listening
        time.sleep(30)

    startup_exe = fluid.Executor(place)
    startup_exe.run(startup_prog)
    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = args.cpus
    strategy.allow_op_delay = False
    build_strategy = fluid.BuildStrategy()
    if args.reduce_strategy == "reduce":
        build_strategy.reduce_strategy = fluid.BuildStrategy(
        ).ReduceStrategy.Reduce
    else:
        build_strategy.reduce_strategy = fluid.BuildStrategy(
        ).ReduceStrategy.AllReduce

    avg_loss = train_args[0]

    if args.update_method == "pserver":
        # parameter server mode distributed training, merge
        # gradients on local server, do not initialize
        # ParallelExecutor with multi server all-reduce mode.
        num_trainers = 1
        trainer_id = 0

    exe = fluid.ParallelExecutor(
        True,
        avg_loss.name,
        main_program=train_prog,
        exec_strategy=strategy,
        build_strategy=build_strategy,
        num_trainers=num_trainers,
        trainer_id=trainer_id)

    if not args.no_test:
        if args.update_method == "pserver":
            test_scope = None
        else:
            # NOTE: use an empty scope to avoid test exe using NCCLID
            test_scope = fluid.Scope()
        test_exe = fluid.ParallelExecutor(
            True, main_program=test_prog, share_vars_from=exe)

    for pass_id in range(args.pass_num):
        num_samples = 0
        iters = 0
        start_time = time.time()
        if not args.use_reader_op:
            reader_generator = train_args[3]()  #train_reader
        batch_id = 0
        data = None
        if args.use_reader_op:
            train_args[4].start()
        while True:
            if not args.use_reader_op:
                data = next(reader_generator, None)
                if data == None:
                    break
            if args.profile and batch_id == 5:
                profiler.start_profiler("All")
                profiler.reset_profiler()
            elif args.profile and batch_id == 10:
                print("profiling total time: ", time.time() - start_time)
                profiler.stop_profiler("total", "/tmp/profile_%d_pass%d" %
                                       (trainer_id, pass_id))
            if iters == args.iterations:
                reader_generator.close()
                break

            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
            fetch_list = [avg_loss.name]
            acc_name_list = [v.name for v in train_args[2]]
            fetch_list.extend(acc_name_list)

            if args.use_fake_data or args.use_reader_op:
                try:
                    fetch_ret = exe.run(fetch_list)
                except fluid.core.EOFException as eof:
                    break
                except fluid.core.EnforceNotMet as ex:
                    traceback.print_exc()
                    break
            else:
                fetch_ret = exe.run(fetch_list, feed=feeder.feed(data))
            if args.use_reader_op:
                num_samples += args.batch_size * args.gpus
            else:
                num_samples += len(data)

            iters += 1
            if batch_id % 1 == 0:
                fetched_data = [np.mean(np.array(d)) for d in fetch_ret]
                print("Pass %d, batch %d, loss %s, accucacys: %s" %
                      (pass_id, batch_id, fetched_data[0], fetched_data[1:]))
            batch_id += 1

        print_train_time(start_time, time.time(), num_samples)
        if args.use_reader_op:
            train_args[4].reset()  # reset reader handle
        else:
            del reader_generator

        if not args.no_test and test_args[2]:
            test_feeder = None
            if not args.use_reader_op:
                test_feed_var_list = [
                    var for var in test_prog.global_block().vars.itervalues()
                    if var.is_data
                ]
                test_feeder = fluid.DataFeeder(test_feed_var_list, place)
            test_ret = test_parallel(test_exe, test_args, args, test_prog,
                                     test_feeder)
            print("Pass: %d, Test Accuracy: %s\n" %
                  (pass_id, [np.mean(np.array(v)) for v in test_ret]))

    print("total train time: ", time.time() - over_all_start)


def print_arguments(args):
    vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
                                vars(args)['device'] == 'GPU')
    print('----------- Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


def print_train_time(start_time, end_time, num_samples):
    train_elapsed = end_time - start_time
    examples_per_sec = num_samples / train_elapsed
    print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
          (num_samples, train_elapsed, examples_per_sec))


def print_paddle_envs():
    print('----------- Configuration envs -----------')
    for k in os.environ:
        if "PADDLE_" in k:
            print "ENV %s:%s" % (k, os.environ[k])
    print('------------------------------------------------')


def main():
    args = parse_args()
    print_arguments(args)
    print_paddle_envs()
    if args.no_random:
        fluid.default_startup_program().random_seed = 1

    # the unique trainer id, starting from 0, needed by trainer
    # only
    nccl_id_var, num_trainers, trainer_id = (
        None, 1, int(os.getenv("PADDLE_TRAINER_ID", "0")))

    if args.use_cprof:
        pr = cProfile.Profile()
        pr.enable()

    model_def = __import__("models.%s" % args.model, fromlist=["models"])

    train_prog = fluid.Program()
    test_prog = fluid.Program()
    startup_prog = fluid.Program()

    train_args = list(model_def.get_model(args, True, train_prog, startup_prog))
    test_args = list(model_def.get_model(args, False, test_prog, startup_prog))

    all_args = [train_args, test_args, args]

    if args.update_method == "pserver":
        train_prog, startup_prog = dist_transpile(trainer_id, args, train_prog,
                                                  startup_prog)
        if not train_prog:
            raise Exception(
                "Must configure correct environments to run dist train.")
        all_args.extend([train_prog, test_prog, startup_prog])
        if args.gpus > 1 and os.getenv("PADDLE_TRAINING_ROLE") == "TRAINER":
            all_args.extend([nccl_id_var, num_trainers, trainer_id])
            train_parallel(*all_args)
        elif os.getenv("PADDLE_TRAINING_ROLE") == "PSERVER":
            # start pserver with Executor
            server_exe = fluid.Executor(fluid.CPUPlace())
            server_exe.run(startup_prog)
            server_exe.run(train_prog)
        exit(0)

    # for other update methods, use default programs
    all_args.extend([train_prog, test_prog, startup_prog])

    if args.update_method == "nccl2":
        nccl_id_var, num_trainers, trainer_id = append_nccl2_prepare(
            trainer_id, startup_prog)

    if args.device == "CPU":
        raise Exception("Only support GPU perf with parallel exe")
    all_args.extend([nccl_id_var, num_trainers, trainer_id])
    train_parallel(*all_args)


if __name__ == "__main__":
    main()