momentum_op.h 11.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
S
sidgoyal78 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
D
dzhwinter 已提交
18 19 20
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
S
sidgoyal78 已提交
21 22 23 24

namespace paddle {
namespace operators {

D
dzhwinter 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
using framework::Tensor;
using framework::SelectedRows;
struct NoNesterov;
struct UseNesterov;

template <typename T>
class CPUDenseMomentumFunctor {
 private:
  const Tensor* param;
  const Tensor* grad;
  const Tensor* velocity;
  const Tensor* learning_rate;
  const T mu;
  const T use_nesterov;
  Tensor* param_out;
  Tensor* velocity_out;

 public:
  CPUDenseMomentumFunctor(const Tensor* param, const Tensor* grad,
                          const Tensor* velocity, const Tensor* learning_rate,
                          const T mu, const bool use_nesterov,
                          Tensor* param_out, Tensor* velocity_out)
      : param(param),
        grad(grad),
        velocity(velocity),
        learning_rate(learning_rate),
        mu(mu),
        use_nesterov(use_nesterov),
        param_out(param_out),
        velocity_out(velocity_out) {}

  inline void operator()() {
    auto p_out = framework::EigenVector<T>::Flatten(*param_out);
    auto v_out = framework::EigenVector<T>::Flatten(*velocity_out);

    auto p = framework::EigenVector<T>::Flatten(*param);
    auto v = framework::EigenVector<T>::Flatten(*velocity);
    auto g = framework::EigenVector<T>::Flatten(*grad);
    auto* lr = learning_rate->data<T>();

    v_out = v * mu + g;
    if (use_nesterov) {
      p_out = p - (g + v_out * mu) * lr[0];
    } else {
      p_out = p - lr[0] * v_out;
    }
  }
};

template <typename T, typename UpdateMethod>
class DenseMomentumFunctor;

// NOTE(dzh) for performance.
// avoid if/else in inside kernel, implement GPU UseNesterov/NoNesterov as two
// functor.
template <typename T>
class DenseMomentumFunctor<T, UseNesterov> {
 private:
  const T* p_;
  const T* g_;
  const T* v_;
  const T* lr_;
  const T mu_;
  const int64_t num_;
  T* p_out_;
  T* v_out_;

 public:
  DenseMomentumFunctor(const T* p, const T* g, const T* v,
                       const T* learning_rate, const T mu, const int64_t num,
                       T* p_out, T* v_out)
      : p_(p),
        g_(g),
        v_(v),
        lr_(learning_rate),
        mu_(mu),
        num_(num),
        p_out_(p_out),
        v_out_(v_out) {}
  inline HOSTDEVICE void operator()(size_t i) const {
    // put memory access in register
    const T p = p_[i];
    const T g = g_[i];
    const T lr = lr_[0];
    const T v = v_[i];
    T v_out = v * mu_ + g;
    T p_out = p - (g + v_out * mu_) * lr;
    // write reigster to memory
    v_out_[i] = v_out;
    p_out_[i] = p_out;
  }
};

template <typename T>
class DenseMomentumFunctor<T, NoNesterov> {
 private:
  const T* p_;
  const T* g_;
  const T* v_;
  const T* lr_;
  const T mu_;
  const int64_t num_;
  T* p_out_;
  T* v_out_;

 public:
  DenseMomentumFunctor(const T* p, const T* g, const T* v,
                       const T* learning_rate, const T mu, const int64_t num,
                       T* p_out, T* v_out)
      : p_(p),
        g_(g),
        v_(v),
        lr_(learning_rate),
        mu_(mu),
        num_(num),
        p_out_(p_out),
        v_out_(v_out) {}
  inline HOSTDEVICE void operator()(size_t i) const {
    // put memory access in register
    const T p = p_[i];
    const T g = g_[i];
    const T lr = lr_[0];
    const T v = v_[i];
    T v_out = v * mu_ + g;
    T p_out = p - lr * v_out;
    // write reigster to memory
    v_out_[i] = v_out;
    p_out_[i] = p_out;
  }
};

// TODO(dzh): enhance speed use eigen
// template<typename T>
// class CPUSparseMomentumFunctor {
// private:
//   const T* p_;
//   const T* g_;
//   const T* v_;
//   const T* lr_;
//   const T mu_;
//   const bool use_nesterov_;
//   const int64_t* rows_;
//   const int64_t row_numel_;
//   const int64_t row_height_;
//   T* p_out_;
//   T* v_out_;

// public:
//   CPUSparseMomentumFunctor(const T* p, const T* g, const T* v, const T* lr,
//   const T mu, const bool use_nesterov, const int64_t* rows, const int64_t
//   row_numel, const int64_t row_height, T* p_out, T* v_out) :p_(p), g_(g),
//   v_(v), lr_(lr), mu_(mu), rows_(rows), row_numel_(row_numel),
//   row_height_(row_height), p_out_(p_out), v_out_(v_out) {}
//   inline void operator()() {

//   }
// };

template <typename T, typename UpdateMethod>
class SparseMomentumFunctor;

186
template <typename T>
D
dzhwinter 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
class SparseMomentumFunctor<T, UseNesterov> {
 private:
  const T* p_;
  const T* g_;
  const T* v_;
  const T* lr_;
  const T mu_;
  const int64_t* rows_;
  const int64_t row_numel_;
  const int64_t row_height_;
  T* p_out_;
  T* v_out_;

 public:
  SparseMomentumFunctor(const T* p, const T* g, const T* v, const T* lr,
                        const T mu, const int64_t* rows, int64_t row_numel,
                        int64_t row_height, T* p_out, T* v_out)
      : p_(p),
        g_(g),
        v_(v),
        lr_(lr),
        mu_(mu),
        rows_(rows),
        row_numel_(row_numel),
        row_height_(row_height),
        p_out_(p_out),
        v_out_(v_out) {}

  inline HOSTDEVICE void operator()(size_t i) {
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_height_, i / row_numel_);
    T g = row_idx >= 0 ? g_[row_idx * row_numel_ + i % row_numel_] : 0;
    // put memory access in register
    const T p = p_[i];
    const T lr = lr_[0];
    const T v = v_[i];
    T v_out = v * mu_ + g;
    T p_out = p - (g + v_out * mu_) * lr;
    // write reigster to memory
    v_out_[i] = v_out;
    p_out_[i] = p_out;
  }
};

template <typename T>
class SparseMomentumFunctor<T, NoNesterov> {
 private:
  const T* p_;
  const T* g_;
  const T* v_;
  const T* lr_;
  const T mu_;
  const int64_t* rows_;
  const int64_t row_numel_;
  const int64_t row_height_;
  T* p_out_;
  T* v_out_;

 public:
  SparseMomentumFunctor(const T* p, const T* g, const T* v, const T* lr,
                        const T mu, const int64_t* rows, int64_t row_numel,
                        int64_t row_height, T* p_out, T* v_out)
      : p_(p),
        g_(g),
        v_(v),
        lr_(lr),
        mu_(mu),
        rows_(rows),
        row_numel_(row_numel),
        row_height_(row_height),
        p_out_(p_out),
        v_out_(v_out) {}

  inline HOSTDEVICE void operator()(size_t i) {
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_height_, i / row_numel_);
    T g = row_idx >= 0 ? g_[row_idx * row_numel_ + i % row_numel_] : 0;
    // put memory access in register
    const T p = p_[i];
    const T lr = lr_[0];
    const T v = v_[i];
    T v_out = v * mu_ + g;
    T p_out = p - v_out * lr;
    // write reigster to memory
    v_out_[i] = v_out;
    p_out_[i] = p_out;
  }
};

template <typename DeviceContext, typename T>
S
sidgoyal78 已提交
277 278 279
class MomentumOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
280
    T mu = static_cast<T>(ctx.Attr<float>("mu"));
281
    bool use_nesterov = ctx.Attr<bool>("use_nesterov");
S
sidgoyal78 已提交
282

283 284 285
    auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    auto param = ctx.Input<framework::Tensor>("Param");
    auto param_out = ctx.Output<framework::Tensor>("ParamOut");
D
dzhwinter 已提交
286 287 288 289 290
    auto* velocity = ctx.Input<framework::Tensor>("Velocity");
    auto velocity_out = ctx.Output<framework::Tensor>("VelocityOut");
    param_out->mutable_data<T>(ctx.GetPlace());
    velocity_out->mutable_data<T>(ctx.GetPlace());

291 292 293
    auto* grad_var = ctx.InputVar("Grad");
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto grad = ctx.Input<framework::Tensor>("Grad");
D
dzhwinter 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
      if (platform::is_cpu_place(ctx.GetPlace())) {
        CPUDenseMomentumFunctor<T> functor(param, grad, velocity, learning_rate,
                                           mu, use_nesterov, param_out,
                                           velocity_out);
        functor();
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param->numel());
        if (use_nesterov) {
          DenseMomentumFunctor<T, UseNesterov> functor(
              param->data<T>(), grad->data<T>(), velocity->data<T>(),
              learning_rate->data<T>(), mu, param->numel(),
              param_out->mutable_data<T>(ctx.GetPlace()),
              velocity_out->mutable_data<T>(ctx.GetPlace()));
          for_range(functor);

        } else {
          DenseMomentumFunctor<T, NoNesterov> functor(
              param->data<T>(), grad->data<T>(), velocity->data<T>(),
              learning_rate->data<T>(), mu, param->numel(),
              param_out->mutable_data<T>(ctx.GetPlace()),
              velocity_out->mutable_data<T>(ctx.GetPlace()));
          for_range(functor);
        }
319
      }
D
dzhwinter 已提交
320

321 322 323
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      // sparse update embedding with selectedrows
      auto grad = ctx.Input<framework::SelectedRows>("Grad");
S
sidgoyal78 已提交
324

325 326
      // sparse update maybe empty.
      if (grad->rows().size() == 0) {
D
dzhwinter 已提交
327
        VLOG(3) << "Grad SelectedRows contains no data!";
328 329
        return;
      }
D
dzhwinter 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
      auto* merged_grad = const_cast<framework::Scope&>(ctx.scope())
                              .Var()
                              ->GetMutable<framework::SelectedRows>();

      math::scatter::MergeAdd<DeviceContext, T> merge_func;
      merge_func(ctx.template device_context<DeviceContext>(), *grad,
                 merged_grad);

      platform::ForRange<DeviceContext> for_range(
          static_cast<const DeviceContext&>(ctx.device_context()),
          param->numel());

      const int64_t* rows = nullptr;
      if (platform::is_gpu_place(ctx.GetPlace())) {
        rows = merged_grad->rows().CUDAData(ctx.GetPlace());
      } else {
        rows = merged_grad->rows().data();
      }

      if (use_nesterov) {
        SparseMomentumFunctor<T, UseNesterov> functor(
            param->data<T>(), merged_grad->value().data<T>(),
            velocity->data<T>(), learning_rate->data<T>(), mu, rows,
            static_cast<int64_t>(merged_grad->rows().size()),
            static_cast<int64_t>(merged_grad->height()),
            param_out->mutable_data<T>(ctx.GetPlace()),
            velocity_out->mutable_data<T>(ctx.GetPlace()));
        for_range(functor);

      } else {
        SparseMomentumFunctor<T, NoNesterov> functor(
            param->data<T>(), merged_grad->value().data<T>(),
            velocity->data<T>(), learning_rate->data<T>(), mu, rows,
            static_cast<int64_t>(merged_grad->rows().size()),
            static_cast<int64_t>(merged_grad->height()),
            param_out->mutable_data<T>(ctx.GetPlace()),
            velocity_out->mutable_data<T>(ctx.GetPlace()));
        for_range(functor);
368
      }
K
kavyasrinet 已提交
369
    } else {
370
      PADDLE_THROW("Unsupported Variable Type of Grad");
K
kavyasrinet 已提交
371
    }
S
sidgoyal78 已提交
372 373 374 375 376
  }
};

}  // namespace operators
}  // namespace paddle