momentum_op.h 3.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
S
sidgoyal78 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
S
sidgoyal78 已提交
18 19 20 21

namespace paddle {
namespace operators {

22
template <typename T>
S
sidgoyal78 已提交
23 24 25
class MomentumOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
26
    T mu = static_cast<T>(ctx.Attr<float>("mu"));
27
    bool use_nesterov = ctx.Attr<bool>("use_nesterov");
S
sidgoyal78 已提交
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    auto param = ctx.Input<framework::Tensor>("Param");
    auto param_out = ctx.Output<framework::Tensor>("ParamOut");
    auto* velocity_var = ctx.InputVar("Velocity");
    auto* grad_var = ctx.InputVar("Grad");
    if (grad_var->IsType<framework::LoDTensor>()) {
      PADDLE_ENFORCE(velocity_var->IsType<framework::LoDTensor>(),
                     "Unmatched Type of Param and Grad");
      auto velocity = ctx.Input<framework::Tensor>("Velocity");
      auto grad = ctx.Input<framework::Tensor>("Grad");
      auto velocity_out = ctx.Output<framework::Tensor>("VelocityOut");
      param_out->mutable_data<T>(ctx.GetPlace());
      velocity_out->mutable_data<T>(ctx.GetPlace());
      auto p_out = framework::EigenVector<T>::Flatten(*param_out);
      auto v_out = framework::EigenVector<T>::Flatten(*velocity_out);

      auto p = framework::EigenVector<T>::Flatten(*param);
      auto v = framework::EigenVector<T>::Flatten(*velocity);
      auto g = framework::EigenVector<T>::Flatten(*grad);
      auto* lr = learning_rate->data<T>();

      v_out = v * mu + g;
      if (use_nesterov) {
        p_out = p - (g + v_out * mu) * lr[0];
      } else {
        p_out = p - lr[0] * v_out;
      }
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      // sparse update embedding with selectedrows
      PADDLE_ENFORCE(velocity_var->IsType<framework::SelectedRows>(),
                     "Unmatched Type of Param and Grad");
      auto velocity = ctx.Input<framework::SelectedRows>("Velocity");
      auto grad = ctx.Input<framework::SelectedRows>("Grad");
      auto velocity_out = ctx.Output<framework::SelectedRows>("VelocityOut");
S
sidgoyal78 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77
      // sparse update maybe empty.
      if (grad->rows().size() == 0) {
        return;
      }
      PADDLE_ENFORCE(grad->height() == velocity->height(),
                     "Unmatched gradient and velocity.");
      auto* p_out = param_out->mutable_data<T>(ctx.GetPlace());
      auto* v_out =
          velocity_out->mutable_value()->mutable_data<T>(ctx.GetPlace());
      auto* lr = learning_rate->data<T>();
      auto* p = param->data<T>();
      auto* g = grad->value().data<T>();
      auto* v = velocity->value().data<T>();
      size_t grad_row_numel = grad->value().numel() / grad->rows().size();
S
sidgoyal78 已提交
78

79 80 81 82 83 84 85 86 87 88 89 90 91
      for (size_t i = 0; i < grad->rows().size(); ++i) {
        size_t grad_row_index = grad->rows()[i];
        for (size_t j = 0; j < grad_row_numel; ++j) {
          size_t p_i = grad_row_index * grad_row_numel + j;
          size_t g_i = i * grad_row_numel + j;
          v_out[g_i] = v[g_i] * mu + g[g_i];
          if (use_nesterov) {
            p_out[p_i] = p[p_i] - (g[g_i] + v_out[g_i] * mu) * lr[0];
          } else {
            p_out[p_i] = p[p_i] - v_out[g_i] * lr[0];
          }
        }
      }
K
kavyasrinet 已提交
92
    } else {
93
      PADDLE_THROW("Unsupported Variable Type of Grad");
K
kavyasrinet 已提交
94
    }
S
sidgoyal78 已提交
95 96 97 98 99
  }
};

}  // namespace operators
}  // namespace paddle