conv_mkldnn_op.cc 24.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15 16
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
17
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

Y
Yihua Xu 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
inline void GetWeightsTz(std::vector<int>& weights_tz, int groups,  // NOLINT
                         bool is_conv3d) {
  if (groups > 1) {
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
  }
}

inline mkldnn::memory::format GetWeightsFormat(mkldnn::memory::format format,
                                               int groups, bool is_conv3d) {
  if (is_conv3d) {
    return (groups == 1) ? format : mkldnn::memory::format::goidhw;
  } else {
    return (groups == 1) ? format : mkldnn::memory::format::goihw;
  }
}

71
template <typename T>
72
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
73 74 75 76 77
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

K
Krzysztof Binias 已提交
78 79
    const bool is_test = ctx.Attr<bool>("is_test");

80 81
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
82 83 84 85
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
86
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
87 88
    auto* output = ctx.Output<Tensor>("Output");

89 90 91 92 93 94
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
95
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
Y
Yihua Xu 已提交
96
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
97 98
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
99 100 101 102 103 104 105
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
106 107 108 109

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
110
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
111
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
112 113
    int groups = ctx.Attr<int>("groups");

114
    bool is_conv3d = strides.size() == 3U;
115
    // TODO(tpatejko): add support for dilation
116
    PADDLE_ENFORCE(
117 118 119 120
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
121 122 123 124 125 126 127 128
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
129
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
130
    GetWeightsTz(weights_tz, g, is_conv3d);
131 132
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

133
    // Get unique name for storing MKLDNN primitives
J
Jacek Czaja 已提交
134
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
135 136 137 138 139 140
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";

    std::vector<primitive> pipeline;

141 142
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
Y
Yihua Xu 已提交
143
        GetWeightsFormat(filter->format(), g, is_conv3d);
144

145
    auto user_src_md = platform::MKLDNNMemDesc(
146
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
147
    auto user_weights_md = platform::MKLDNNMemDesc(
148
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
149 150 151 152 153

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
154 155 156 157
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

158 159 160 161
    if (is_conv3d) {
      chosen_memory_format =
          platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
    }
Y
Yihua Xu 已提交
162
    weights_format = GetWeightsFormat(chosen_memory_format, g, is_conv3d);
163

164
    auto src_md = platform::MKLDNNMemDesc(
165
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
166
    auto weights_md = platform::MKLDNNMemDesc(
167
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
168 169
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
170
    auto dst_md = platform::MKLDNNMemDesc(
171
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
172 173

    // create a conv primitive descriptor and save it for usage in backward
174
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
175 176
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
177 178 179 180
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
181 182 183
      conv_pd = ConvFwdPrimitiveDesc(
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
          fuse_relu, fuse_residual_conn, fwd_prop_kind);
184
    } else {
185 186 187
      conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides,
                                     paddings, mkldnn_engine, fuse_relu,
                                     fuse_residual_conn, fwd_prop_kind);
188
    }
189
    // Save conv_pd/src_memory/weights_memory for backward pass
190
    if (!is_test) dev_ctx.SetBlob(key_conv_pd, conv_pd);
191

J
Jacek Czaja 已提交
192
    platform::ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
193

194 195 196 197 198 199
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));

200 201 202 203 204
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
205 206

    std::shared_ptr<mkldnn::memory> dst_memory_p;
207

208
    if (fuse_residual_conn) {
209 210
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
211

212 213 214 215 216 217
      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
218

219
      if (residual_param->format() != handler.GetDstFormat()) {
Y
Yu Yang 已提交
220 221 222
        auto output_data = output->mutable_data<T>(
            ctx.GetPlace(), ::paddle::memory::Allocator::kDefault,
            handler.GetDstMemorySize());
223 224 225 226 227 228 229 230 231
        auto residual_data_tz =
            paddle::framework::vectorize2int(residual_param->dims());
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
        auto user_residual_memory_p = handler.AcquireResidualDataMemory(
            user_residual_md, to_void_cast<T>(residual_param_data));
232 233 234

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
235 236
      } else {
        output->ShareDataWith(*residual_param);
237 238 239
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
240
      }
241
    } else {
242 243 244
      auto output_data = output->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault,
          handler.GetDstMemorySize());
245 246
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
247
    }
248 249

    // create convolution op primitive
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
      auto user_bias_memory_p =
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
266 267

    // push primitive to stream and wait until it's executed
268
    pipeline.push_back(*conv_p);
269 270 271
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
272
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
273
  }
274

275
 private:
276
  mkldnn::primitive_attr CreatePostOps(bool fuse_relu,
277
                                       bool fuse_residual_conn) const {
M
Michal Gallus 已提交
278 279
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
280
    // Fusion with Elementwise layer relies on adding a sum post-operation with
281 282 283 284 285
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
286 287 288 289 290 291 292 293 294 295 296
      post_operations.append_sum(1.0f);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 0.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
M
Michal Gallus 已提交
297 298 299 300
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

301 302 303 304
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& dst, const std::vector<int>& strides,
                       const std::vector<int>& paddings,
305
                       const mkldnn::engine& engine, const bool fuse_relu,
306 307
                       const bool fuse_residual_conn,
                       mkldnn::prop_kind fwd_prop_kind) const {
308 309
    memory::dims stride_dims = strides;
    memory::dims padding_dims = paddings;
310

311
    auto conv_desc = mkldnn::convolution_forward::desc(
312 313
        fwd_prop_kind, mkldnn::convolution_direct, src, weights, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);
314

315 316
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn);
M
Michal Gallus 已提交
317 318 319

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);
320

321 322
    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
323
  }
324 325 326 327 328 329

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& bias, const memory::desc& dst,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
330
                       const mkldnn::engine& engine, const bool fuse_relu,
331 332
                       const bool fuse_residual_conn,
                       mkldnn::prop_kind fwd_prop_kind) const {
333 334
    memory::dims stride_dims = strides;
    memory::dims padding_dims = paddings;
335 336

    auto conv_desc = mkldnn::convolution_forward::desc(
337 338
        fwd_prop_kind, mkldnn::convolution_direct, src, weights, bias, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);
339

340 341
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn);
M
Michal Gallus 已提交
342 343 344

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);
345 346 347 348

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }
349 350 351
};

template <typename T>
352
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
353 354 355 356 357
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

358 359
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
360 361 362 363 364 365 366 367 368 369
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

370 371 372 373 374 375 376 377 378 379 380 381 382
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

383 384 385 386
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

387 388 389 390
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
391 392
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
393

394
    bool is_conv3d = strides.size() == 3U;
395 396 397 398 399 400 401 402 403
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
404
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
405
    GetWeightsTz(weights_tz, g, is_conv3d);
406 407
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

408 409
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
Y
Yihua Xu 已提交
410
        GetWeightsFormat(filter->format(), g, is_conv3d);
411

412
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
413
    // as well as attributes of primitive to be created
414
    // This name will be used as key when saving info into device context
J
Jacek Czaja 已提交
415 416 417
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Input("Output"));
418 419

    const std::string key_conv_pd = key + "@conv_pd";
420
    std::vector<primitive> pipeline;
421

422 423
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
424
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
425
    auto user_weights_md = platform::MKLDNNMemDesc(
426
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
427 428
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
429 430 431 432 433

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
434 435 436 437
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

438 439 440 441
    if (is_conv3d) {
      chosen_memory_format =
          platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
    }
Y
Yihua Xu 已提交
442
    weights_format = GetWeightsFormat(chosen_memory_format, g, is_conv3d);
443

444
    auto src_md = platform::MKLDNNMemDesc(
445
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
446
    auto diff_src_md = platform::MKLDNNMemDesc(
447
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
448
    auto weights_md = platform::MKLDNNMemDesc(
449
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
450
    auto diff_weights_md = platform::MKLDNNMemDesc(
451
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
452
    auto diff_dst_md = platform::MKLDNNMemDesc(
453
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
454

455
    // Retrieve conv_pd from device context
456 457 458
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
459 460 461
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
478 479 480
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
481 482 483 484 485 486 487 488 489

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

490 491
    // create backward conv primitive for weights
    if (filter_grad) {
492 493
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
494

495 496 497 498
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

499
      const size_t size = handler.GetDiffWeightsMemorySize();
Y
Yu Yang 已提交
500 501
      filter_grad_data = filter_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
502

503 504 505 506 507 508 509 510 511
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
512 513

      filter_grad->set_layout(DataLayout::kMKLDNN);
514
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
515 516 517
    }

    if (input_grad) {
518 519 520 521 522 523 524
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

525
      const size_t size = handler.GetDiffSourceMemorySize();
Y
Yu Yang 已提交
526 527
      input_grad_data = input_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
528

529 530 531 532 533 534 535
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
536 537

      input_grad->set_layout(DataLayout::kMKLDNN);
538
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
539
    }
540
    stream(stream::kind::eager).submit(pipeline).wait();
541 542 543 544 545 546 547 548
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
549 550 551 552 553 554 555 556 557
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
558 559 560 561 562 563 564 565 566 567

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);