completion.py 62.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
from copy import deepcopy
17
import time
18 19 20 21

from paddle.fluid import core
from paddle.fluid import framework

22
from .utils import print_program_with_dist_attr
23
from .operators import find_best_compatible_distributed_operator_impl
24
from .dist_context import get_default_distributed_context, _node_id
25 26 27 28
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
29
from .process_mesh import ProcessMesh
30
from paddle.distributed.fleet.meta_optimizers.common import OpRole
31 32


33 34 35 36
def compute_compatible_process_mesh(process_mesh_list):
    """Compute the compatible process mesh given a list of process meshes."""
    if not process_mesh_list:
        return None
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    def _compute_compatible_process_mesh_two(pm1, pm2):
        if pm1 is None:
            return True, pm2
        if pm2 is None:
            return True, pm1
        if pm1 == pm2:
            return True, pm1
        if pm1.processes == pm2.processes:
            if len(pm1.topology) >= len(pm2.topology):
                return True, pm1
            else:
                return True, pm2
        process_set1 = set(pm1.processes)
        process_set2 = set(pm2.processes)
        if process_set1.issubset(process_set2):
            return True, pm2
        if process_set2.issubset(process_set1):
            return True, pm1
        return False, None

    compatible_result = None
    for process_mesh in process_mesh_list:
        compatible, compatible_result = _compute_compatible_process_mesh_two(
            compatible_result, process_mesh)
        if not compatible:
            return None
    return copy.deepcopy(compatible_result)


def compute_compatible_dim_mapping(dim_mapping_list):
    """Compute the compatible dim mapping given a list of dim mapping."""
    if not dim_mapping_list:
        return None
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    def _compute_compatible_dim_mapping_two(dm1, dm2):
        if dm1 == -1:
            return True, dm2
        if dm2 == -1:
            return True, dm1
        if dm1 == dm2:
            return True, dm1
        return False, None

    compatible_result = -1
    for mapping in dim_mapping_list:
        compatible, compatible_result = _compute_compatible_dim_mapping_two(
            compatible_result, mapping)
        if not compatible:
            return None
    return compatible_result


def compute_compatible_dims_mapping(dims_mapping_list):
    """Compute the compatible dims mapping given a list of dims mapping.
       Each of dims mapping is also a list.
93
    """
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
        if dims_mapping is None:
            return None
        if len(dims_mapping) != length:
            return None
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
            list(dim_mappings))
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


112 113 114 115 116 117 118 119 120 121 122 123 124 125
def merge_process_mesh_two(pm1, pm2):
    process_set1 = set()
    process_set2 = set()
    if pm1 is None and pm2 is None:
        return None
    if pm1 is not None:
        process_set1 = set(pm1.processes)
    if pm2 is not None:
        process_set2 = set(pm2.processes)
    merged_process_set = process_set1.union(process_set2)
    merged_process_mesh = ProcessMesh(list(merged_process_set))
    return merged_process_mesh


126 127 128 129 130 131 132 133 134 135 136 137 138
def _validate_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(
                process_mesh.topology):
            return False
    for i in range(len(process_mesh.topology)):
        if dims_mapping.count(i) > 1:
            return False
    return True


139 140 141 142 143 144 145 146 147 148 149
class Completer:
    def __init__(self, dist_context):
        assert dist_context is not None
        self._dist_context = dist_context

    def _update_tensor_node_dims_mapping(self, tensor_node, fwd=True):
        changed = False
        if (not tensor_node.is_var()) or (tensor_node.var() is None):
            return False
        tensor_desc = tensor_node.var()
        # Skip reader tensor
150 151 152
        if tensor_desc.type() == core.VarDesc.VarType.READER \
            or tensor_desc.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            or tensor_desc.type == core.VarDesc.VarType.STEP_SCOPES:
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            return False
        tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
            tensor_node)
        assert tensor_dist_attr is not None
        if tensor_dist_attr.is_annotated("dims_mapping"):
            return False
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        if fwd:
            dims_mapping_list = []
            for pred_op_node in tensor_node.inputs:
                if pred_op_node.op() is not None:
                    if pred_op_node.op().type() == "create_py_reader" \
                        or pred_op_node.op().type() == "create_double_buffer_reader" \
                        or pred_op_node.op().type() == "read":
                        continue
                    op_dist_attr = self._dist_context.get_op_dist_attr_for_graph(
                        pred_op_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            tensor_desc.name())
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
                dims_mapping_list)
177 178 179
            if not _validate_dims_mapping(compatible_dims_mapping,
                                          tensor_dist_attr.process_mesh):
                return False
180 181 182
            if (compatible_dims_mapping is not None) and \
                (compatible_dims_mapping != tensor_dims_mapping):
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
183 184
                changed = True
        else:
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
            dims_mapping_list = []
            for succ_op_node in tensor_node.outputs:
                if succ_op_node.op() is not None:
                    if succ_op_node.op().type() == "create_py_reader" \
                        or succ_op_node.op().type() == "create_double_buffer_reader" \
                        or succ_op_node.op().type() == "read":
                        continue
                    op_dist_attr = self._dist_context.get_op_dist_attr_for_graph(
                        succ_op_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            tensor_desc.name())
                        dims_mapping_list.append(op_dims_mapping)
            dims_mapping_list.append(tensor_dims_mapping)
            compatible_dims_mapping = compute_compatible_dims_mapping(
                dims_mapping_list)
201 202 203
            if not _validate_dims_mapping(compatible_dims_mapping,
                                          tensor_dist_attr.process_mesh):
                return False
204 205 206
            if (compatible_dims_mapping is not None) and \
                (compatible_dims_mapping != tensor_dims_mapping):
                tensor_dist_attr.dims_mapping = compatible_dims_mapping
207
                changed = True
208
        return changed
209

210 211 212 213 214 215 216 217
    def _update_op_node_dims_mapping(self, op_node, fwd=True):
        changed = False
        if (not op_node.is_op()) or (op_node.op() is None):
            return False
        # Skip reader op
        op_desc = op_node.op()
        if op_desc.type() == "create_py_reader" \
            or op_desc.type() == "create_double_buffer_reader" \
218
            or op_desc.type() == "while" \
219 220 221 222
            or op_desc.type() == "read":
            return False
        dist_op = self._dist_context.get_dist_op_for_graph(op_node)
        op_dist_attr = dist_op.dist_attr
223
        original_op_dist_attr = copy.deepcopy(op_dist_attr)
224 225
        if fwd:
            for tensor_node in op_node.inputs:
226
                if tensor_node.is_var() and tensor_node.var() is not None:
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_input_dims_mapping(
                            tensor_desc.name()):
                        continue
                    tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            tensor_desc.name())
                        compatible_dims_mapping = compute_compatible_dims_mapping(
                            [op_dims_mapping, tensor_dims_mapping])
                        if (compatible_dims_mapping is not None) and \
                            (compatible_dims_mapping != op_dims_mapping):
                            op_dist_attr.set_input_dims_mapping(
                                tensor_desc.name(), compatible_dims_mapping)
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
247
            op_dist_impls = find_best_compatible_distributed_operator_impl(
248
                dist_op, fwd=True)
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
                    if op_dist_impl.is_auto_compatible(dist_op):
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
266
                    else:
267 268 269 270 271 272 273 274
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
275
        else:
276
            for tensor_node in op_node.outputs:
277
                if tensor_node.is_var() and tensor_node.var() is not None:
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
                    if tensor_node.var().type() == core.VarDesc.VarType.READER:
                        continue
                    tensor_desc = tensor_node.var()
                    if op_dist_attr.is_annotated_output_dims_mapping(
                            tensor_desc.name()):
                        continue
                    tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                        tensor_node)
                    if op_dist_attr.process_mesh == tensor_dist_attr.process_mesh:
                        tensor_dims_mapping = tensor_dist_attr.dims_mapping
                        op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                            tensor_desc.name())
                        compatible_dims_mapping = compute_compatible_dims_mapping(
                            [op_dims_mapping, tensor_dims_mapping])
                        if (compatible_dims_mapping is not None) and \
                            (compatible_dims_mapping != op_dims_mapping):
                            op_dist_attr.set_output_dims_mapping(
                                tensor_desc.name(), compatible_dims_mapping)
                            changed = True
            # Find the most compatible implemenetations from the distributed operator
298
            op_dist_impls = find_best_compatible_distributed_operator_impl(
299
                dist_op, fwd=False)
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
            if op_dist_impls is not None:
                not_compatible = True
                backup_op_dist_attr = copy.deepcopy(op_dist_attr)
                backup_changed = changed
                for op_dist_impl in op_dist_impls:
                    dim_changed = op_dist_impl.update_dims_mapping(dist_op)
                    if dim_changed:
                        changed = True
                    if op_dist_impl.is_auto_compatible(dist_op):
                        not_compatible = False
                        if op_dist_impl.type == "elementwise":
                            op_dist_attr.impl_type = "default"
                        else:
                            op_dist_attr.impl_type = op_dist_impl.type
                        # op_dist_attr.impl_type = op_dist_impl.type
                        op_dist_attr.impl_idx = op_dist_impl.idx
                        not_compatible = False
                        break
318
                    else:
319 320 321 322 323 324 325 326
                        dist_op.dist_attr = backup_op_dist_attr
                        changed = backup_changed
                if not_compatible:
                    dist_op.dist_attr = original_op_dist_attr
                    changed = False
            else:
                dist_op.dist_attr = original_op_dist_attr
                changed = False
327
        return changed
328

329 330 331 332 333 334 335
    def _update_dims_mapping_between_graphs(self):
        changed = False
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                parent_node)
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                child_node)
336 337
            if parent_node_dist_attr.process_mesh != child_node_dist_attr.process_mesh:
                continue
338 339 340 341
            parent_node_dims_mapping = parent_node_dist_attr.dims_mapping
            child_node_dims_mapping = child_node_dist_attr.dims_mapping
            compatible_dims_mapping = compute_compatible_dims_mapping(
                [parent_node_dims_mapping, child_node_dims_mapping])
342 343 344
            if not _validate_dims_mapping(compatible_dims_mapping,
                                          parent_node_dist_attr.process_mesh):
                return False
345 346 347 348 349 350
            if (compatible_dims_mapping is not None) \
                and (compatible_dims_mapping != parent_node_dims_mapping):
                parent_node_dist_attr.dims_mapping = compatible_dims_mapping
                changed = True
            if (compatible_dims_mapping is not None) \
                and (compatible_dims_mapping != child_node_dims_mapping):
351
                child_node_dist_attr.dims_mapping = compatible_dims_mapping
352 353
                changed = True
        return changed
354

355 356 357 358
    def _update_dims_mapping(self):
        # Complete dims_mapping for each node
        reach_fix_point = False
        while not reach_fix_point:
359
            changed = False
360 361 362 363 364 365 366 367 368 369 370 371 372 373
            for is_fwd in [True, False]:
                all_nodes = self._dist_context.serial_ordered_nodes \
                    if is_fwd else reversed(self._dist_context.serial_ordered_nodes)
                for node in all_nodes:
                    if node.is_var() and node.var() is not None:
                        tensor_changed = self._update_tensor_node_dims_mapping(
                            node, fwd=is_fwd)
                        if tensor_changed:
                            changed = True
                    if node.is_op() and node.op() is not None:
                        op_changed = self._update_op_node_dims_mapping(
                            node, fwd=is_fwd)
                        if op_changed:
                            changed = True
374 375 376
                graph_changed = self._update_dims_mapping_between_graphs()
                if graph_changed:
                    changed = True
377
            if changed:
378
                reach_fix_point = False
379
            else:
380 381
                reach_fix_point = True

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    def _update_process_mesh_by_nearest(self, op_node, nearest_op_node):
        op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
        # Set the process mesh of the op node by its nearest op node
        if not op_dist_attr.is_annotated("process_mesh"):
            process_mesh = op_dist_attr.process_mesh
            nearest_op_dis_attr = self._dist_context.get_dist_attr_for_graph(
                nearest_op_node)
            nearest_process_mesh = nearest_op_dis_attr.process_mesh
            compatible_process_mesh = compute_compatible_process_mesh(
                [process_mesh, nearest_process_mesh])
            if compatible_process_mesh is not None \
                and process_mesh != compatible_process_mesh:
                op_dist_attr.process_mesh = compatible_process_mesh
        # Skip the process_mesh setting of inputs and outputs of while_op
        if op_dist_attr.op_type == "while":
            return
        # Set the process mesh of the op node's leaf-inputs
        for tensor_node in op_node.inputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
                tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                    tensor_node)
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                # Skip the non-leaf var node
                if len(tensor_node.inputs) != 0:
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh])
                if compatible_process_mesh is not None \
                    and tensor_dist_attr.process_mesh != compatible_process_mesh:
                    tensor_dist_attr.process_mesh = compatible_process_mesh
413
                # Set the process mesh of the op node's outputs
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        for tensor_node in op_node.outputs:
            if tensor_node.is_var() and tensor_node.var() is not None:
                tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                    tensor_node)
                if tensor_dist_attr.is_annotated("process_mesh"):
                    continue
                compatible_process_mesh = compute_compatible_process_mesh(
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh])
                if compatible_process_mesh is not None \
                    and tensor_dist_attr.process_mesh != compatible_process_mesh:
                    tensor_dist_attr.process_mesh = compatible_process_mesh

    def _update_process_mesh_for_specials(self):
        def _find_nearest_tensor_node_before(nodes, idx, var_name):
            for node in reversed(nodes[:idx]):
                if node.is_var() and node.var() is not None \
                    and node.var().name() == var_name:
                    return node

        def _find_nearest_tensor_node_after(nodes, idx, var_name):
            for node in nodes[idx + 1:]:
                if node.is_var() and node.var() is not None \
                    and node.var().name() == var_name:
                    return node

        def _find_nodes_related_to_cond(source_node):
            related_nodes = []
            visited = set()
            frontier = list()
            frontier.append(source_node)
            # BFS
            while len(frontier) != 0:
                cur = frontier[0]
                frontier = frontier[1:]
                if _node_id(cur) in visited:
                    continue
                # TODO: need more restrictions
451 452
                neighbors = cur.inputs + cur.outputs
                for node in neighbors:
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
                    if node.is_var() and node.var() is not None:
                        if node.var().type() != core.VarDesc.VarType.READER \
                            and len(node.var().shape()) == 1:
                            frontier.append(node)
                            related_nodes.append(node)
                    if node.is_op() and node.op() is not None:
                        flag = True
                        if node.op().type() == "create_py_reader" \
                            or node.op().type() == "create_double_buffer_reader" \
                            or node.op().type() == "read":
                            flag = False
                        for tensor_node in node.inputs:
                            if tensor_node.is_var() and tensor_node.var(
                            ) is not None:
                                if tensor_node.var().type() == core.VarDesc.VarType.READER \
                                    or len(tensor_node.var().shape()) != 1:
                                    flag = False
                                    break
                        for tensor_node in node.outputs:
                            if tensor_node.is_var() and tensor_node.var(
                            ) is not None:
                                if tensor_node.var().type() == core.VarDesc.VarType.READER \
                                    or len(tensor_node.var().shape()) != 1:
                                    flag = False
                                    break
                        if flag:
                            frontier.append(node)
                            related_nodes.append(node)
                visited.add(_node_id(cur))
            return related_nodes

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
        def _make_dims_mapping_replicate(dist_attr):
            if isinstance(dist_attr, TensorDistributedAttribute):
                for i, _ in enumerate(dist_attr.dims_mapping):
                    dist_attr.dims_mapping[i] = -1
            if isinstance(dist_attr, OperatorDistributedAttribute):
                for arg_name in dist_attr.inputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
                    dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                for arg_name in dist_attr.outputs_dist_attrs.keys():
                    new_dims_mapping = []
                    dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                    for _ in dims_mapping:
                        new_dims_mapping.append(-1)
                    dist_attr.set_output_dims_mapping(arg_name,
                                                      new_dims_mapping)

503 504 505
        # Amend the process meshes related to while_op
        for while_op_node, while_op_node_idx in self._while_op_nodes.values():
            sub_graph_id = while_op_node.op()._block_attr_id("sub_block")
506
            sub_graph = self._dist_context.serial_graph.get_sub_graph(
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
                sub_graph_id)
            sub_graph_nodes = list(sub_graph.all_nodes())
            while_dist_op = self._dist_context.get_dist_op_for_graph(
                while_op_node)
            while_op_dist_attr = while_dist_op.dist_attr

            # Step 1: set the process mesh of while_op to the merged process mesh of its subblock
            merged_process_mesh = while_op_dist_attr.process_mesh
            for node in sub_graph_nodes:
                if (node.is_var() and node.var() is not None) \
                    or (node.is_op() and node.op() is not None):
                    dist_attr = self._dist_context.get_dist_attr_for_graph(node)
                    merged_process_mesh = merge_process_mesh_two(
                        merged_process_mesh, dist_attr.process_mesh)
            while_op_dist_attr.process_mesh = merged_process_mesh
522
            _make_dims_mapping_replicate(while_op_dist_attr)
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562

            # Step 2: set the related nodes of while_op to the process mesh of while_op
            # Step 2.1: Find related nodes of cond var the graph of while_op
            cond_tensor_related_nodes = []
            cond_tensor_name = while_op_node.op().input("Condition")[0]
            cond_tensor_node = None
            for node in while_op_node.inputs:
                if node.is_var() and node.var() is not None \
                    and node.var().name() == cond_tensor_name:
                    cond_tensor_node = node
                    cond_tensor_related_nodes.append(cond_tensor_node)
                    break

            cond_tensor_related_nodes.extend(
                _find_nodes_related_to_cond(cond_tensor_node))

            # Step 2.2: Find related nodes of cond var in the subgraph of while_op
            cond_tensor_node = None
            for node in reversed(sub_graph_nodes):
                if node.is_var() and node.var() is not None \
                    and node.var().name() == cond_tensor_name \
                        and len(node.outputs) == 0:
                    cond_tensor_node = node
                    break

            cond_tensor_related_nodes.extend(
                _find_nodes_related_to_cond(cond_tensor_node))
            # Step 2.3: Add the StepScops output of while_op
            stepscopes_tensor_name = while_op_node.op().output("StepScopes")[0]
            stepscopes_tensor_node = None
            for output_node in while_op_node.outputs:
                if output_node.is_var() and output_node.var() is not None \
                    and output_node.var().name() == stepscopes_tensor_name:
                    stepscopes_tensor_node = output_node
            cond_tensor_related_nodes.append(stepscopes_tensor_node)
            # Step 2.4: Set the process meshes of all nodes related to cond var to the process mesh of while op
            for node in cond_tensor_related_nodes:
                tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
                    node)
                tensor_dist_attr.process_mesh = merged_process_mesh
563
                _make_dims_mapping_replicate(tensor_dist_attr)
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

            # Step 3: set the process meshes of the inputs in while_op to the process meshes of the outside input nodes
            while_op_inputs_dist_attrs = while_op_dist_attr.inputs_dist_attrs
            for tensor_name, tensor_dist_attr in while_op_inputs_dist_attrs.items(
            ):
                nearest_tensor_node = _find_nearest_tensor_node_before(
                    self._dist_context.serial_ordered_nodes, while_op_node_idx,
                    tensor_name)
                nearest_tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
                    nearest_tensor_node)
                tensor_dist_attr.process_mesh = nearest_tensor_dist_attr.process_mesh

            # Step 4: set the process meshes of the outputs in while_op to the process meshes of the outside output nodes
            while_op_outputs_dist_attrs = while_op_dist_attr.outputs_dist_attrs
            for tensor_name, tensor_dist_attr in while_op_outputs_dist_attrs.items(
            ):
                nearest_tensor_node = _find_nearest_tensor_node_before(
                    self._dist_context.serial_ordered_nodes, while_op_node_idx,
                    tensor_name)
                if nearest_tensor_node is None:
                    nearest_tensor_node = _find_nearest_tensor_node_after(
                        self._dist_context.serial_ordered_nodes,
                        while_op_node_idx, tensor_name)
                nearest_tensor_dist_attr = self._dist_context.get_dist_attr_for_graph(
                    nearest_tensor_node)
                tensor_dist_attr.process_mesh = nearest_tensor_dist_attr.process_mesh

        # Amend the process meshes related to array
        for array_node_list in self._array_nodes.values():
            merged_process_mesh = None
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
                    array_node)
                merged_process_mesh = merge_process_mesh_two(
                    merged_process_mesh, dist_attr.process_mesh)
            for array_node in array_node_list:
                dist_attr = self._dist_context.get_dist_attr_for_graph(
                    array_node)
                dist_attr.process_mesh = merged_process_mesh
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
                _make_dims_mapping_replicate(dist_attr)

    def _update_process_mesh_between_graphs(self):
        for parent_node, child_node in self._node_pairs_between_graphs:
            parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                parent_node)
            child_node_dist_attr = self._dist_context.get_dist_attr_for_graph(
                child_node)
            parent_node_dist_attr.process_mesh = child_node_dist_attr.process_mesh
            compatible_process_mesh = compute_compatible_process_mesh([
                parent_node_dist_attr.process_mesh,
                child_node_dist_attr.process_mesh
            ])
            if compatible_process_mesh is not None \
                and parent_node_dist_attr.process_mesh != compatible_process_mesh:
                parent_node_dist_attr.process_mesh = compatible_process_mesh
            if compatible_process_mesh is not None \
                and child_node_dist_attr.process_mesh != compatible_process_mesh:
                child_node_dist_attr.process_mesh = compatible_process_mesh
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

    def _update_process_mesh(self):
        ordered_op_nodes = self._dist_context._serial_ordered_op_nodes

        # Step 1: Set the annotated process meshes from tensors to the first ops using them
        ordered_tensor_nodes = self._dist_context._serial_ordered_tensor_nodes
        for tensor_node in ordered_tensor_nodes:
            tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph(
                tensor_node)
            if not tensor_dist_attr.is_annotated("process_mesh"):
                continue
            first_op_node = None
            for op_node in ordered_op_nodes:
                # TODO: Need a better rule for the control flow ops.
                # For now, do not set the process mesh of while_op from its inputs
                if op_node.op().type() == "while":
                    continue
                for input_tensor_node in op_node.inputs:
                    if _node_id(tensor_node) == _node_id(input_tensor_node):
                        first_op_node = op_node
                        break
                if first_op_node is not None:
                    break
            if first_op_node is None:
                continue
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(
                first_op_node)
            if op_dist_attr is not None and not op_dist_attr.is_annotated(
                    "process_mesh"):
                compatible_process_mesh = compute_compatible_process_mesh(
                    [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh])
                if compatible_process_mesh is not None \
                    and op_dist_attr.process_mesh != compatible_process_mesh:
                    op_dist_attr.process_mesh = compatible_process_mesh

        # Step 2: set the process meshes of ops with the nearest op before them
        # Step 2.1: find the first op node which has the process mesh
        idx_of_first_op_node_has_process_mesh = -1
        for idx, op_node in enumerate(ordered_op_nodes):
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            if op_dist_attr.process_mesh is not None \
                and idx_of_first_op_node_has_process_mesh == -1:
                idx_of_first_op_node_has_process_mesh = idx
                # Reuse the following method to set the related tensors for same op node
                self._update_process_mesh_by_nearest(op_node, op_node)
        # Step 2.2: set the process meshes of ops by the nearest op node after the first op node
        if idx_of_first_op_node_has_process_mesh + 1 > len(ordered_op_nodes):
            return None
        for idx, op_node in enumerate(ordered_op_nodes[
                idx_of_first_op_node_has_process_mesh + 1:]):
672
            original_idx = idx_of_first_op_node_has_process_mesh + idx + 1
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
            nearest_op_node = ordered_op_nodes[original_idx - 1]
            nearest_op_dist_attr = self._dist_context.get_dist_attr_for_graph(
                nearest_op_node)
            op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node)
            assert nearest_op_dist_attr.process_mesh is not None
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)
        # Step 2.3: set the process meshes of ops by the nearest op node before the first op node
        nearest_op_node = ordered_op_nodes[
            idx_of_first_op_node_has_process_mesh]
        for op_node in ordered_op_nodes[:idx_of_first_op_node_has_process_mesh]:
            self._update_process_mesh_by_nearest(op_node, nearest_op_node)

        # Step 3: adjust the process meshes for special ops
        self._update_process_mesh_for_specials()

688 689 690
        # Step 4: adjust the process meshes between graphs 
        self._update_process_mesh_between_graphs()

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
    def _prepare(self):
        self._while_op_nodes = {}
        self._array_nodes = {}
        self._node_pairs_between_graphs = []
        all_nodes = self._dist_context.serial_ordered_nodes
        for idx, node in enumerate(all_nodes):
            if node.is_op():
                if node.op().type() == "while":
                    self._while_op_nodes[_node_id(node)] = (node, idx)
                if node.op().type() == "read_from_array":
                    array_var_name = node.op().input("X")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
                if node.op().type() == "write_to_array":
                    array_var_name = node.op().output("Out")[0]
                    if self._array_nodes.get(array_var_name, None) is None:
                        self._array_nodes[array_var_name] = []
                    self._array_nodes[array_var_name].append(node)
                    self._array_nodes[array_var_name].append(node.outputs[0])
            if node.is_var() and node.var() is not None:
                if node.node.graph_id() != 0:
                    for before_node in reversed(all_nodes[:idx]):
                        if before_node.is_var() and before_node.var() is not None \
                            and before_node.node.graph_id() == node.node.graph_id() - 1 \
                                and before_node.var().name() == node.var().name():
                            self._node_pairs_between_graphs.append(
                                (before_node, node))
                    for after_node in all_nodes[idx + 1:]:
                        if after_node.is_var() and after_node.var() is not None \
                            and after_node.node.graph_id() == node.node.graph_id() - 1 \
                                and after_node.var().name() == node.var().name():
                            self._node_pairs_between_graphs.append(
                                (after_node, node))

726
    def complete_forward_annotation(self, serial_main_program=None):
727 728 729 730 731 732 733
        """ Complete annotation for the partial annotated serial_main_program.
        Arguments:
            serial_main_program: partial annotated serial_main_program.
        Returns:
            serial_main_program: completed annotated serial_main_program.
        """

734 735 736 737
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context.serial_main_program = serial_main_program
738

739
        self._dist_context.initialize()
740

741 742
        self._prepare()

743 744 745 746 747 748 749
        self._update_process_mesh()

        self._update_dims_mapping()

        # Copy the corresponding distributed attribute from graph to serial_main_program
        self._dist_context.copy_dist_attr_from_graph_to_program()

750
        # NOTE:[HighOrderGrad] update vars and ops distributed attribute in high order gradient
751
        self._complete_high_order_grad_annotation(serial_main_program)
752

753 754 755 756 757 758 759
        # Do the validation check and amend some completion
        self._dist_context.amend_dist_attr_for_program()

        self._dist_context.validate_dist_attr_for_program()

        return serial_main_program

760
    def _complete_high_order_grad_annotation(self, serial_main_program):
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
        """
        NOTE: 
            [HighOrderGrad] Complete the annotation of vars and ops only for high order gradient.
            This function is temporary to support high order gradient, and will be removed in the future.
        """

        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_op_by_id(ops, id):
            for op in ops:
                if op.desc.id() == id:
                    return op
            return None

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
        grad_var_to_var = dist_op_context.grad_var_to_var

        appended_grad_times = 0
        for idx in range(0, len(ops)):
            op = ops[idx]
            if int(op.attr('op_role')) == int(
                    core.op_proto_and_checker_maker.OpRole.Forward):
                continue

            if int(op.attr('op_role')) == int(
                    core.op_proto_and_checker_maker.OpRole.Backward) and int(
                        ops[idx - 1].attr('op_role')) == int(
                            core.op_proto_and_checker_maker.OpRole.Forward):
                appended_grad_times += 1

            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
            if grad_op.desc.id() in dist_op_context.grad_op_id_to_op_id:
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
                forward_op = _get_op_by_id(
                    ops, dist_op_context.grad_op_id_to_op_id[grad_op.desc.id()])
                assert forward_op is not None

                fwd_op_dist_attr = self._dist_context.get_op_dist_attr_for_program(
                    forward_op)
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
                grad_op_dist_attr = OperatorDistributedAttribute()
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh

                for input_name in grad_op.input_arg_names:
                    if input_name not in forward_op.input_arg_names and input_name not in forward_op.output_arg_names:
                        if input_name in grad_var_to_var[appended_grad_times]:
                            fwd_name = grad_var_to_var[appended_grad_times][
                                input_name]
                            ref_dims_mapping = fwd_op_dist_attr.get_output_dims_mapping(
                                fwd_name)
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                                input_var).dims_mapping
                    else:
                        if fwd_op_dist_attr.get_input_dims_mapping(input_name):
                            ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
                                input_name)
                        else:
                            ref_dims_mapping = fwd_op_dist_attr.get_output_dims_mapping(
                                input_name)
                    assert ref_dims_mapping is not None, "[{}] 's dims mapping is NONE".format(
                        input_name)
                    grad_op_dist_attr.set_input_dims_mapping(input_name,
                                                             ref_dims_mapping)

                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var[appended_grad_times]
                    fwd_name = grad_var_to_var[appended_grad_times][output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
                        fwd_name)
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
                    grad_op_dist_attr.set_output_dims_mapping(output_name,
                                                              ref_dims_mapping)

                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)

            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
            else:

                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
                    assert output_name in grad_var_to_var[appended_grad_times], \
                        "sum op's output '{}' has no corresponding var".format(
                        output_name)
                    ref_fwd_var_name = grad_var_to_var[appended_grad_times][
                        output_name]
                    ref_fwd_var = vars[ref_fwd_var_name]
                    ref_fwd_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        ref_fwd_var)
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
                            var_name, ref_fwd_dims_mapping)
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_name, ref_fwd_dims_mapping)

                elif grad_op.type == 'fill_zeros_like':
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
                    ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        ref_var)
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
                    grad_op_dist_attr.set_input_dims_mapping(ref_var_name,
                                                             ref_dims_mapping)
                    grad_op_dist_attr.set_output_dims_mapping(output_var_name,
                                                              ref_dims_mapping)

                elif grad_op.type in ['shape', 'fill_constant']:
                    continue

                else:
                    raise ValueError("got unexpect op [{}]".format(
                        str(grad_op.type)))

                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)

918 919
    def complete_backward_annotation(self, serial_main_program):
        """Complete the annotation of vars and ops in the backward phase for parallel program."""
920 921 922 923
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context.serial_main_program = serial_main_program
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

        def _is_grad_var_name(name):
            if "@GRAD" in name:
                return True
            return False

        def _get_forward_varname_from_grad_varname(grad_var_name):
            assert _is_grad_var_name(
                grad_var_name), "[{}] is not a grad varnme.".format(
                    grad_var_name)
            return grad_var_name[:grad_var_name.find("@GRAD")]

        def _get_op_by_id(ops, id):
            for op in ops:
                if op.desc.id() == id:
                    return op
            return None

        first_backward_op_idx = -1
        for idx, op in enumerate(serial_main_program.global_block().ops):
            if int(op.attr('op_role')) == int(
                    int(core.op_proto_and_checker_maker.OpRole.Backward) | int(
                        core.op_proto_and_checker_maker.OpRole.Loss)):
                assert op.type == "fill_constant"
                first_backward_op_idx = idx
                break

        assert first_backward_op_idx >= 0, "No backward procedure found in this program."

        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        dist_op_context = self._dist_context.dist_op_context
956 957
        grad_var_to_var = dist_op_context.grad_var_to_var[len(
            dist_op_context.grad_var_to_var)]
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

        for idx in range(first_backward_op_idx, len(ops)):

            # complete the initial grad loss op
            if idx == first_backward_op_idx:
                assert ops[idx].type == "fill_constant"
                assert len(
                    ops[idx].input_arg_names
                ) == 0, "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].input_arg_names))
                assert len(
                    ops[idx].output_arg_names
                ) == 1, "first backward op should has only ONE output, but got [{}]".format(
                    len(ops[idx].output_arg_names))

                grad_var = vars[ops[idx].output_arg_names[0]]
                forward_var_name = _get_forward_varname_from_grad_varname(
                    grad_var.name)
                forward_var = vars[forward_var_name]

                # TODO complete other attribte for grad var
                tensor_dist_attr = TensorDistributedAttribute()
                process_mesh = self._dist_context.get_tensor_dist_attr_for_program(
                    forward_var).process_mesh
                dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                    forward_var).dims_mapping
                tensor_dist_attr.dims_mapping = dims_mapping
                tensor_dist_attr.process_mesh = process_mesh
                self._dist_context.set_tensor_dist_attr_for_program(
                    grad_var, tensor_dist_attr)
988

989 990 991 992 993 994 995
                op_dist_attr = OperatorDistributedAttribute()
                op_dist_attr.process_mesh = process_mesh
                op_dist_attr.set_output_dims_mapping(grad_var.name,
                                                     dims_mapping)
                self._dist_context.set_op_dist_attr_for_program(ops[idx],
                                                                op_dist_attr)
                continue
996

997 998 999 1000 1001 1002 1003 1004 1005 1006
            # complete the annotation of grad op (xxx_grad op or sum op)
            # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id
            grad_op = ops[idx]
            if grad_op.desc.id() in dist_op_context.grad_op_id_to_op_id:
                # TODO support the case where one forward op corresponding to multiple xxx_grad op
                forward_op = _get_op_by_id(
                    ops[:first_backward_op_idx],
                    dist_op_context.grad_op_id_to_op_id[grad_op.desc.id()])
                assert forward_op is not None

J
JZ-LIANG 已提交
1007
                if grad_op.type == "concat" and forward_op.type == "split":
Z
zhaoyingli 已提交
1008
                    forward_op_dist_attr = self._dist_context.get_op_dist_attr_for_program(
J
JZ-LIANG 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
                        forward_op)
                    output_var = vars[grad_op.desc.output('Out')[0]]
                    split_input_var_name = forward_op.input("X")[0]
                    ref_dims_mapping = forward_op_dist_attr.get_input_dims_mapping(
                        split_input_var_name)
                    ref_mesh = forward_op_dist_attr.process_mesh

                    grad_op_dist_attr = OperatorDistributedAttribute()
                    for input_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
                            input_name, ref_dims_mapping)

                    output_var_dist_attr = TensorDistributedAttribute()
                    output_var_dist_attr.dims_mapping = ref_dims_mapping
                    output_var_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1024
                    self._dist_context.set_tensor_dist_attr_for_program(
J
JZ-LIANG 已提交
1025 1026 1027 1028 1029
                        output_var, output_var_dist_attr)

                    grad_op_dist_attr.set_output_dims_mapping(output_var.name,
                                                              ref_dims_mapping)
                    grad_op_dist_attr.process_mesh = ref_mesh
Z
zhaoyingli 已提交
1030 1031
                    self._dist_context.set_op_dist_attr_for_program(
                        grad_op, grad_op_dist_attr)
J
JZ-LIANG 已提交
1032 1033
                    continue

1034
                fwd_op_dist_attr = self._dist_context.get_op_dist_attr_for_program(
1035
                    forward_op)
1036
                fwd_op_process_mesh = fwd_op_dist_attr.process_mesh
1037
                grad_op_dist_attr = OperatorDistributedAttribute()
1038
                grad_op_dist_attr.process_mesh = fwd_op_process_mesh
1039 1040

                for input_name in grad_op.input_arg_names:
1041 1042 1043 1044 1045 1046 1047 1048 1049
                    if input_name not in forward_op.input_arg_names and input_name not in forward_op.output_arg_names:
                        if input_name in grad_var_to_var:
                            fwd_name = grad_var_to_var[input_name]
                            ref_dims_mapping = fwd_op_dist_attr.get_output_dims_mapping(
                                fwd_name)
                        else:
                            input_var = vars[input_name]
                            ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                                input_var).dims_mapping
1050
                    else:
1051 1052
                        if fwd_op_dist_attr.get_input_dims_mapping(input_name):
                            ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
1053 1054
                                input_name)
                        else:
1055
                            ref_dims_mapping = fwd_op_dist_attr.get_output_dims_mapping(
1056 1057
                                input_name)
                    assert ref_dims_mapping is not None, "[{}] 's dims mapping is NONE".format(
1058
                        input_name)
1059 1060
                    grad_op_dist_attr.set_input_dims_mapping(input_name,
                                                             ref_dims_mapping)
1061

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
                for output_name in grad_op.output_arg_names:
                    assert output_name in grad_var_to_var
                    fwd_name = grad_var_to_var[output_name]
                    ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping(
                        fwd_name)
                    # var
                    output_var = vars[output_name]
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = fwd_op_process_mesh
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
                    grad_op_dist_attr.set_output_dims_mapping(output_name,
                                                              ref_dims_mapping)
1077

1078 1079
                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)
1080

1081
            # grad ops that have not a corresponding mapping in grad_op_id_to_op_id
1082
            else:
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
                if grad_op.type == 'sum':
                    assert all(map(_is_grad_var_name, grad_op.input_arg_names))
                    output_name = grad_op.output_arg_names[0]
                    assert output_name in grad_var_to_var, "sum op's output '{}' has no corresponding var".format(
                        output_name)
                    ref_fwd_var_name = grad_var_to_var[output_name]
                    ref_fwd_var = vars[ref_fwd_var_name]
                    ref_fwd_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        ref_fwd_var)
                    ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping
                    ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh

                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping
                    tensor_dist_attr.process_mesh = ref_fwd_process_mesh
                    output_var = vars[output_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_fwd_process_mesh
                    for var_name in grad_op.input_arg_names:
                        grad_op_dist_attr.set_input_dims_mapping(
                            var_name, ref_fwd_dims_mapping)
                    grad_op_dist_attr.set_output_dims_mapping(
                        output_name, ref_fwd_dims_mapping)

                elif grad_op.type == 'fill_zeros_like':
                    ref_var_name = grad_op.input_arg_names[0]
                    ref_var = vars[ref_var_name]
                    ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        ref_var)
                    ref_dims_mapping = ref_dist_attr.dims_mapping
                    ref_process_mesh = ref_dist_attr.process_mesh
                    # output
                    tensor_dist_attr = TensorDistributedAttribute()
                    tensor_dist_attr.dims_mapping = ref_dims_mapping
                    tensor_dist_attr.process_mesh = ref_process_mesh
                    output_var_name = grad_op.output_arg_names[0]
                    output_var = vars[output_var_name]
                    self._dist_context.set_tensor_dist_attr_for_program(
                        output_var, tensor_dist_attr)
                    # op
                    grad_op_dist_attr = OperatorDistributedAttribute()
                    grad_op_dist_attr.process_mesh = ref_process_mesh
                    grad_op_dist_attr.set_input_dims_mapping(ref_var_name,
                                                             ref_dims_mapping)
                    grad_op_dist_attr.set_output_dims_mapping(output_var_name,
                                                              ref_dims_mapping)

                else:
                    raise ValueError("got unexpect op [{}]".format(
                        str(grad_op.type)))
1138 1139 1140 1141

                self._dist_context.set_op_dist_attr_for_program(
                    grad_op, grad_op_dist_attr)

1142
    def complete_update_annotation(self, serial_main_program=None):
1143
        """Complete the annotation of vars and ops in the update phase for parallel program."""
1144 1145 1146 1147
        if serial_main_program is None:
            serial_main_program = self._dist_context.serial_main_program
        else:
            self._dist_context.serial_main_program = serial_main_program
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
        ops = list(serial_main_program.global_block().ops)
        vars = serial_main_program.global_block().vars
        learning_rate_completed = False

        for idx in range(len(ops)):

            # complete the annotation of the optimizer op.
            # TODO to add attribute for moment var
            op = ops[idx]
            if int(op.attr('op_role')) == int(OpRole.Optimize):
Z
zhaoyingli 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
                if op.type == "clip_by_norm":
                    param_grad = vars[op.input("X")[0]]
                    param_grad_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        param_grad)
                    assert param_grad_dist_attr is not None
                    ref_process_mesh = param_grad_dist_attr.process_mesh
                    ref_dims_mapping = param_grad_dist_attr.dims_mapping

                    out = vars[op.output("Out")[0]]
                    out_dist_attr = TensorDistributedAttribute()
                    out_dist_attr.process_mesh = ref_process_mesh
                    out_dist_attr.dims_mapping = ref_dims_mapping
                    self._dist_context.set_tensor_dist_attr_for_program(
                        out, out_dist_attr)

                    op_dist_attr = OperatorDistributedAttribute()
                    op_dist_attr.process_mesh = ref_process_mesh
                    op_dist_attr.set_input_dist_attr(param_grad.name,
                                                     param_grad_dist_attr)
                    op_dist_attr.set_output_dist_attr(out.name, out_dist_attr)
                    self._dist_context.set_op_dist_attr_for_program(
                        op, op_dist_attr)
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

                if "Grad" in op.input_names and "Param" in ops[idx].input_names:
                    assert len(op.input(
                        "Param")) == 1, "Only support one-to-one now."
                    assert len(op.input(
                        "Grad")) == 1, "Only support one-to-one now."
                    param = vars[op.input("Param")[0]]
                    grad_var = vars[op.input("Grad")[0]]

                    param_dist_attr = self._dist_context.get_tensor_dist_attr_for_program(
                        param)
                    assert param_dist_attr is not None
                    ref_process_mesh = self._dist_context.get_tensor_dist_attr_for_program(
                        param).process_mesh
                    assert ref_process_mesh is not None
                    ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program(
                        param).dims_mapping
                    assert ref_dims_mapping is not None
                    op_dist_attr = OperatorDistributedAttribute()
                    op_dist_attr.process_mesh = ref_process_mesh
                    op_dist_attr.set_input_dims_mapping(grad_var.name,
                                                        ref_dims_mapping)
                    op_dist_attr.set_input_dims_mapping(param.name,
                                                        ref_dims_mapping)
                    op_dist_attr.set_output_dims_mapping(param.name,
                                                         ref_dims_mapping)
                    learning_var = vars[op.input("LearningRate")[0]]
                    op_dist_attr.set_input_dims_mapping(learning_var.name, [-1])
                    op_dist_attr.set_output_dims_mapping(learning_var.name,
                                                         [-1])

                    if not learning_rate_completed:
                        learning_rate_completed = True
                        var_dist_attr = TensorDistributedAttribute()
                        var_dist_attr.process_mesh = ref_process_mesh
                        var_dist_attr.dims_mapping = [-1]
                        self._dist_context.set_tensor_dist_attr_for_program(
                            learning_var, var_dist_attr)

                    for input_name in op.desc.input_names():

                        if input_name in [
                                'Param', 'Grad', 'LearningRate', "SkipUpdate",
                                "Beta1Tensor", "Beta2Tensor", "EpsilonTensor",
                                "MasterParam"
                        ]:
                            continue

                        assert len(op.desc.input(input_name)) == 1
                        input_var = vars[op.desc.input(input_name)[0]]
                        input_var_attr = TensorDistributedAttribute()

                        if "Beta1Pow" in input_name or "Beta2Pow" in input_name:
                            input_var_attr.dims_mapping = [-1]
                            op_dist_attr.set_input_dims_mapping(input_var.name,
                                                                [-1])
                            op_dist_attr.set_output_dims_mapping(input_var.name,
                                                                 [-1])
                        else:
                            assert "Moment" in input_name
                            input_var_attr.dims_mapping = ref_dims_mapping
                            op_dist_attr.set_input_dims_mapping(
                                input_var.name, ref_dims_mapping)
                            op_dist_attr.set_output_dims_mapping(
                                input_var.name, ref_dims_mapping)

                        input_var_attr.process_mesh = ref_process_mesh
                        self._dist_context.set_tensor_dist_attr_for_program(
                            input_var, input_var_attr)

                    self._dist_context.set_op_dist_attr_for_program(
                        op, op_dist_attr)
                    continue