completion.py 36.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from copy import deepcopy

from paddle.fluid import core
from paddle.fluid import framework

from .utils import compute_compatible_process_mesh
from .utils import compute_compatible_dim_mapping
from .utils import compute_compatible_dims_mapping
from .utils import print_program_with_distributed_attr
from .context import get_default_distributed_context
from .operators import find_best_compatible_distributed_operator_impl
C
caozhou 已提交
26
from .attribute import OperatorDistributedAttribute, TensorDistributedAttribute
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

ELEMENTWISE_LIKE_OP_LIST = ["elementwise_add", "gelu", "dropout", "cast"]


def is_elementwise_like_op(op_type):
    if op_type in ELEMENTWISE_LIKE_OP_LIST:
        return True
    else:
        return False


def update_tensor_node_process_mesh(dist_context, tensor_node, fwd=True):
    """
    Update tensor's process mesh by using its predecessor's process mesh if in the forward direction, 
    and by using its successor's process mesh if in the backward direction. Note: only the equal 
    process meshes are compatible for now.
    """
    changed = False
    tensor_dist_attr = dist_context.get_tensor_distributed_attr_for_graph(
        tensor_node)
    if tensor_dist_attr.is_annotated("process_mesh"):
        return changed
    tensor_process_mesh = tensor_dist_attr.get_process_mesh()
    if fwd:
        inputs_process_meshes = []
        for pred_op_node in tensor_node.inputs:
            if pred_op_node.op() is not None:
                op_dist_attr = dist_context.get_op_distributed_attr_for_graph(
                    pred_op_node)
                op_process_mesh = op_dist_attr.get_process_mesh()
                inputs_process_meshes.append(op_process_mesh)
        compatible_process_mesh = compute_compatible_process_mesh(
            inputs_process_meshes)
        if compatible_process_mesh is not None and tensor_process_mesh is None:
            tensor_dist_attr.set_process_mesh(compatible_process_mesh)
            changed = True
    else:
        outputs_process_meshes = []
        for succ_op_node in tensor_node.outputs:
            if succ_op_node.op() is not None:
                op_dist_attr = dist_context.get_op_distributed_attr_for_graph(
                    succ_op_node)
                op_process_mesh = op_dist_attr.get_process_mesh()
                outputs_process_meshes.append(op_process_mesh)
        compatible_process_mesh = compute_compatible_process_mesh(
            outputs_process_meshes)
        if compatible_process_mesh is not None and tensor_process_mesh is None:
            tensor_dist_attr.set_process_mesh(compatible_process_mesh)
            changed = True
    return changed


def update_op_node_process_mesh(dist_context, op_node, fwd=True):
    """
    Update op's process mesh by using its predecessor's process mesh if in the forward direction, 
    and by using its successor's process mesh if in the backward direction. Note: only the equal 
    process meshes are compatible for now.
    """
    changed = False
    op_dist_attr = dist_context.get_op_distributed_attr_for_graph(op_node)
    if op_dist_attr.is_annotated("process_mesh"):
        return changed
    op_process_mesh = op_dist_attr.get_process_mesh()
    if fwd:
        inputs_process_meshes = []
        for tensor_node in op_node.inputs:
            if tensor_node.var() is not None:
                tensor_dist_attr = dist_context.get_tensor_distributed_attr_for_graph(
                    tensor_node)
                tensor_process_mesh = tensor_dist_attr.get_process_mesh()
                inputs_process_meshes.append(tensor_process_mesh)
        compatible_process_mesh = compute_compatible_process_mesh(
            inputs_process_meshes)
        if compatible_process_mesh is not None and op_process_mesh is None:
            op_dist_attr.set_process_mesh(compatible_process_mesh)
            changed = True
    else:
        outputs_process_meshes = []
        for tensor_node in op_node.outputs:
            if tensor_node.var() is not None:
                tensor_dist_attr = dist_context.get_tensor_distributed_attr_for_graph(
                    tensor_node)
                tensor_process_mesh = tensor_dist_attr.get_process_mesh()
                outputs_process_meshes.append(tensor_process_mesh)
        compatible_process_mesh = compute_compatible_process_mesh(
            outputs_process_meshes)
        if compatible_process_mesh is not None and op_process_mesh is None:
            op_dist_attr.set_process_mesh(compatible_process_mesh)
            changed = True
    return changed


def update_op_dims_mapping_by_default_dist_impl(op_dist_attr):
    """Each operator has a default distributed operator, only allowed to be sharded in batch dimension."""
    changed = False
    op_desc = op_dist_attr.get_owner_op().desc
    # The following statement will be replaced by a more elegent way
    if op_desc.type() == "shape" or op_desc.type() == "slice":
        return False
    output_names = op_desc.output_names()
    xshape_arg_names = []
    if "XShape" in output_names:
        xshape_arg_names = op_desc.output("XShape")
    batch_dim_mappings = []
    for arg_name in op_desc.input_arg_names():
        if op_dist_attr.is_parameter(arg_name):
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if len(dims_mapping) > 1:
            for idx, mapping in enumerate(dims_mapping[1:]):
                assert mapping == -1, \
                    "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part."\
                        .format(op_desc.type(), idx, mapping)
        batch_dim_mappings.append(dims_mapping[0])
    for arg_name in op_desc.output_arg_names():
        if op_dist_attr.is_parameter(arg_name):
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if len(dims_mapping) > 1:
                for idx, mapping in enumerate(dims_mapping[1:]):
                    assert mapping == -1, \
                        "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part."\
                            .format(op_desc.type(), idx, mapping)
            batch_dim_mappings.append(dims_mapping[0])
        else:
            assert dims_mapping[0] == -1, \
                "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension 0 is sharded by {} part."\
                    .format(op_desc.type(), mapping)
            if len(dims_mapping) > 2:
                for idx, mapping in enumerate(dims_mapping[2:]):
                    assert mapping == -1, \
                        "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension {} is sharded by {} part."\
                            .format(op_desc.type(), idx, mapping)
            batch_dim_mappings.append(dims_mapping[1])

    compatible_dim_mapping = compute_compatible_dim_mapping(batch_dim_mappings)
    assert compatible_dim_mapping is not None, "There is no compatible dim mapping."
    for arg_name in op_desc.input_arg_names():
        if op_dist_attr.is_parameter(arg_name):
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if compatible_dim_mapping != dims_mapping[0]:
            dims_mapping[0] = compatible_dim_mapping
            changed = True
    for arg_name in op_desc.output_arg_names():
        if op_dist_attr.is_parameter(arg_name):
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if compatible_dim_mapping != dims_mapping[0]:
                dims_mapping[0] = compatible_dim_mapping
                changed = True
        else:
            if compatible_dim_mapping != dims_mapping[1]:
                dims_mapping[1] = compatible_dim_mapping
                changed = True

    return changed


def update_op_dims_mapping_by_elementwise_like_dist_impl(op_dist_attr):
    """Element-wise operator can be sharded in any way (but should take care of broadcasting)."""
    changed = False
    op_desc = op_dist_attr.get_owner_op().desc

    input_arg_names = op_desc.input_arg_names()
    input_dims_mapping_dict = {}
    input_dims_mapping_lens = {}
    max_dims_mapping_len = -1
    for arg_name in input_arg_names:
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if max_dims_mapping_len < len(dims_mapping):
            max_dims_mapping_len = len(dims_mapping)
        input_dims_mapping_dict[arg_name] = dims_mapping
        input_dims_mapping_lens[arg_name] = len(dims_mapping)

    dims_mapping_list = []
    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)]
            for i in range(input_dims_mapping_lens[arg_name]):
                new_idx = (max_dims_mapping_len -
                           input_dims_mapping_lens[arg_name]) + i
                new_dims_mapping[new_idx] = input_dims_mapping_dict[arg_name][i]
            dims_mapping_list.append(new_dims_mapping)
        else:
            dims_mapping_list.append(input_dims_mapping_dict[arg_name])
    output_arg_names = op_desc.output_arg_names()
    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        assert len(dims_mapping) == max_dims_mapping_len
        dims_mapping_list.append(dims_mapping)

    compatible_dims_mapping = compute_compatible_dims_mapping(dims_mapping_list)
    assert compatible_dims_mapping is not None, "There is no compatible dim mapping."

    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [
                -1 for _ in range(input_dims_mapping_lens[arg_name])
            ]
            for i in range(input_dims_mapping_lens[arg_name]):
                new_idx = (max_dims_mapping_len -
                           input_dims_mapping_lens[arg_name]) + i
                new_dims_mapping[i] = compatible_dims_mapping[new_idx]
            if new_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                changed = True
        else:
            if compatible_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name,
                                                    compatible_dims_mapping)
                changed = True

    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if compatible_dims_mapping != dims_mapping:
            op_dist_attr.set_output_dims_mapping(arg_name,
                                                 compatible_dims_mapping)
            changed = True

    return changed


def update_tensor_node_dims_mapping(dist_context, tensor_node, fwd=True):
    changed = False
    if (not tensor_node.is_var()) or (tensor_node.var() is None):
        return False
    tensor_desc = tensor_node.var()
257 258 259
    # Skip reader tensor
    if tensor_desc.type() == core.VarDesc.VarType.READER:
        return False
260 261 262 263 264 265 266 267 268 269
    tensor_dist_attr = dist_context.get_tensor_distributed_attr_for_graph(
        tensor_node)
    assert tensor_dist_attr is not None
    if tensor_dist_attr.is_annotated("dims_mapping"):
        return False
    tensor_dims_mapping = tensor_dist_attr.get_dims_mapping()
    if fwd:
        dims_mapping_list = []
        for pred_op_node in tensor_node.inputs:
            if pred_op_node.op() is not None:
270 271 272 273
                if pred_op_node.op().type() == "create_py_reader" \
                    or pred_op_node.op().type() == "create_double_buffer_reader" \
                    or pred_op_node.op().type() == "read":
                    continue
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
                op_dist_attr = dist_context.get_op_distributed_attr_for_graph(
                    pred_op_node)
                op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                    tensor_desc.name())
                dims_mapping_list.append(op_dims_mapping)
        dims_mapping_list.append(tensor_dims_mapping)
        compatible_dims_mapping = compute_compatible_dims_mapping(
            dims_mapping_list)
        if (compatible_dims_mapping is not None) and \
            (compatible_dims_mapping != tensor_dims_mapping):
            tensor_dist_attr.set_dims_mapping(compatible_dims_mapping)
            changed = True
    else:
        dims_mapping_list = []
        for succ_op_node in tensor_node.outputs:
            if succ_op_node.op() is not None:
290 291 292 293
                if succ_op_node.op().type() == "create_py_reader" \
                    or succ_op_node.op().type() == "create_double_buffer_reader" \
                    or succ_op_node.op().type() == "read":
                    continue
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
                op_dist_attr = dist_context.get_op_distributed_attr_for_graph(
                    succ_op_node)
                op_dims_mapping = op_dist_attr.get_input_dims_mapping(
                    tensor_desc.name())
                dims_mapping_list.append(op_dims_mapping)
        dims_mapping_list.append(tensor_dims_mapping)
        compatible_dims_mapping = compute_compatible_dims_mapping(
            dims_mapping_list)
        if (compatible_dims_mapping is not None) and \
            (compatible_dims_mapping != tensor_dims_mapping):
            tensor_dist_attr.set_dims_mapping(compatible_dims_mapping)
            changed = True
    return changed


def update_op_node_dims_mapping(dist_context, op_node, fwd=True):
    changed = False
    if (not op_node.is_op()) or (op_node.op() is None):
        return False
313
    # Skip reader op
314
    op_desc = op_node.op()
315 316 317 318
    if op_desc.type() == "create_py_reader" \
        or op_desc.type() == "create_double_buffer_reader" \
        or op_desc.type() == "read":
        return False
319 320 321 322
    op_dist_attr = dist_context.get_op_distributed_attr_for_graph(op_node)
    if fwd:
        for tensor_node in op_node.inputs:
            if tensor_node.var() is not None:
323 324
                if tensor_node.var().type() == core.VarDesc.VarType.READER:
                    continue
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
                tensor_desc = tensor_node.var()
                if op_dist_attr.is_annotated_input_dims_mapping(
                        tensor_desc.name()):
                    continue
                tensor_dist_attr = dist_context.get_tensor_distributed_attr_for_graph(
                    tensor_node)
                tensor_dims_mapping = tensor_dist_attr.get_dims_mapping()
                op_dims_mapping = op_dist_attr.get_input_dims_mapping(
                    tensor_desc.name())
                compatible_dims_mapping = compute_compatible_dims_mapping(
                    [op_dims_mapping, tensor_dims_mapping])
                if (compatible_dims_mapping is not None) and \
                    (compatible_dims_mapping != op_dims_mapping):
                    op_dist_attr.set_input_dims_mapping(tensor_desc.name(),
                                                        compatible_dims_mapping)
                    changed = True
        # Find the most compatible implemenetations from the distributed operator
        op_dist_impl, op_dist_impl_idx = find_best_compatible_distributed_operator_impl(
            op_desc.type(), op_dist_attr, fwd=True)
        if op_dist_impl is not None:
            dim_changed = op_dist_impl.update_dims_mapping(op_dist_attr)
            if dim_changed:
                changed = True
            # This statement will be replaced by a good way
            if op_dist_impl.is_compatible(op_dist_attr):
                op_dist_attr.set_impl_idx(op_dist_impl_idx)
        elif is_elementwise_like_op(op_desc.type()):
            dim_changed = update_op_dims_mapping_by_elementwise_like_dist_impl(
                op_dist_attr)
            if dim_changed:
                changed = True
            op_dist_attr.set_impl_idx(-1)
        else:
            dim_changed = update_op_dims_mapping_by_default_dist_impl(
                op_dist_attr)
            if dim_changed:
                changed = True
            op_dist_attr.set_impl_idx(-2)
    else:
        for tensor_node in op_node.outputs:
            if tensor_node.var() is not None:
366 367
                if tensor_node.var().type() == core.VarDesc.VarType.READER:
                    continue
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
                tensor_desc = tensor_node.var()
                if op_dist_attr.is_annotated_output_dims_mapping(
                        tensor_desc.name()):
                    continue
                tensor_dist_attr = dist_context.get_tensor_distributed_attr_for_graph(
                    tensor_node)
                tensor_dims_mapping = tensor_dist_attr.get_dims_mapping()
                op_dims_mapping = op_dist_attr.get_output_dims_mapping(
                    tensor_desc.name())
                compatible_dims_mapping = compute_compatible_dims_mapping(
                    [op_dims_mapping, tensor_dims_mapping])
                if (compatible_dims_mapping is not None) and \
                    (compatible_dims_mapping != op_dims_mapping):
                    op_dist_attr.set_output_dims_mapping(
                        tensor_desc.name(), compatible_dims_mapping)
                    changed = True
        # Find the most compatible implemenetations from the distributed operator
        op_dist_impl, op_dist_impl_idx = find_best_compatible_distributed_operator_impl(
            op_desc.type(), op_dist_attr, fwd=False)
        if op_dist_impl is not None:
            dim_changed = op_dist_impl.update_dims_mapping(op_dist_attr)
            if dim_changed:
                changed = True
            # This statement will be replaced by a good way
            if op_dist_impl.is_compatible(op_dist_attr):
                op_dist_attr.set_impl_idx(op_dist_impl_idx)
        elif is_elementwise_like_op(op_desc.type()):
            dim_changed = update_op_dims_mapping_by_elementwise_like_dist_impl(
                op_dist_attr)
            if dim_changed:
                changed = True
            op_dist_attr.set_impl_idx(-1)
        else:
            dim_changed = update_op_dims_mapping_by_default_dist_impl(
                op_dist_attr)
            if dim_changed:
                changed = True
            op_dist_attr.set_impl_idx(-2)
    return changed


def complete_annotation(program, dist_context=None):
    """ Complete annotation for the partial annotated program.

    Arguments:
        program: partial annotated program.
        dist_context: the distributed context is used to store distributed attributes for program.
            If not provided, the default one will be used.
    Returns:
        program: completed annotated program.
    """

    # Use the default distribted context for completeion if there is no one
    if dist_context is None:
        dist_context = get_default_distributed_context()

424
    # Initialize distributed attributes for all var and op node in program
425 426 427 428 429 430 431 432
    dist_context.initialize_distributed_attr_for_program(program)

    # Convert program to graph
    graph = framework.IrGraph(core.Graph(program.desc))

    # Initialize distributed attributes for all var and op node in graph
    dist_context.initialize_distributed_attr_for_graph(graph)

433
    # Complete process mesh for each node
434
    all_nodes = list(graph.all_nodes())
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

    def sort_key_fun(node):
        first = -1
        if node.is_op():
            first = 0
        else:
            first = 1
        second = -1
        if node.is_op() and node.op() is not None:
            second = node.op().id()
        if node.is_var() and node.var() is not None:
            second = node.var().id()
        return (first, second)

    all_nodes.sort(key=sort_key_fun)

451 452
    reach_fix_point = False
    while not reach_fix_point:
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
        total_changed = False
        reach_fwd_fix_point = False
        reach_bwd_fix_point = False
        while not reach_fwd_fix_point:
            changed = False
            for node in all_nodes:
                if node.is_var() and node.var() is not None:
                    tensor_changed = update_tensor_node_process_mesh(
                        dist_context, node, fwd=True)
                    if tensor_changed:
                        changed = True
                if node.is_op() and node.op() is not None:
                    op_changed = update_op_node_process_mesh(
                        dist_context, node, fwd=True)
                    if op_changed:
                        changed = True
            if changed:
                reach_fwd_fix_point = False
                total_changed = True
            else:
                reach_fwd_fix_point = True
        while not reach_bwd_fix_point:
            changed = False
            for node in all_nodes:
                if node.is_var() and node.var() is not None:
                    tensor_changed = update_tensor_node_process_mesh(
                        dist_context, node, fwd=False)
                    if tensor_changed:
                        changed = True
                if node.is_op() and node.op() is not None:
                    op_changed = update_op_node_process_mesh(
                        dist_context, node, fwd=False)
                    if op_changed:
                        changed = True
            if changed:
                reach_bwd_fix_point = False
                total_changed = True
            else:
                reach_bwd_fix_point = True
        if total_changed:
493 494 495
            reach_fix_point = False
        else:
            reach_fix_point = True
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
            # Validation the completion of process meshes and should be moved to a proper location
            is_wrong = False
            for node in all_nodes:
                if node.is_var() and node.var() is not None:
                    tensor_dist_attr = dist_context.get_tensor_distributed_attr_for_graph(
                        node)
                    if tensor_dist_attr.get_process_mesh() is None:
                        msg_str = ""
                        for op_node in node.inputs:
                            if op_node.op() is not None:
                                op_dist_attr = dist_context.get_op_distributed_attr_for_graph(
                                    op_node)
                                msg_str += "{} [{}], ".format(
                                    op_node.op().type(),
                                    op_dist_attr.get_process_mesh())
                            else:
                                msg_str += "{} [{}], ".format(op_node.name(),
                                                              None)
                        for op_node in node.outputs:
                            if op_node.op() is not None:
                                op_dist_attr = dist_context.get_op_distributed_attr_for_graph(
                                    op_node)
                                msg_str += "{} [{}], ".format(
                                    op_node.op().type(),
                                    op_dist_attr.get_process_mesh())
                            else:
                                msg_str += "{} [{}], ".format(op_node.name(),
                                                              None)
                        msg_str = "Cannot decide ProcessMesh of {} among {}. Please use shard_tensor api explicitly to annotate it".format(
                            node.var().name(), msg_str[:-2])
                        is_wrong = True
                        print(msg_str)
                if node.is_op() and node.op() is not None:
                    op_dist_attr = dist_context.get_op_distributed_attr_for_graph(
                        node)
                    if op_dist_attr.get_process_mesh() is None:
                        msg_str = ""
                        for tensor_node in node.inputs:
                            if tensor_node.var() is not None:
                                tensor_dist_attr = dist_context.get_tensor_distributed_attr_for_graph(
                                    tensor_node)
                                msg_str += "{} [{}], ".format(
                                    tensor_node.var().name(),
                                    tensor_dist_attr.get_process_mesh())
                            else:
                                msg_str += "{} [{}], ".format(
                                    tensor_node.name(), None)
                        for tensor_node in node.outputs:
                            if tensor_node.var() is not None:
                                tensor_dist_attr = dist_context.get_tensor_distributed_attr_for_graph(
                                    tensor_node)
                                msg_str += "{} [{}], ".format(
                                    tensor_node.var().name(),
                                    tensor_dist_attr.get_process_mesh())
                            else:
                                msg_str += "{} [{}], ".format(
                                    tensor_node.name(), None)
                        msg_str = "Cannot decide ProcessMesh of {} among {}. Please use shard_op api explicitly to annotate it".format(
                            node.op().type(), msg_str[:-2])
                        is_wrong = True
                        print(msg_str)
                if node.is_op() and node.op() is None:
                    print("op op is None", node.name())
            if is_wrong:
                assert False, "Cannot complete process_meshes of the program."
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

    # Complete dims_mapping for each node
    reach_fix_point = False
    while not reach_fix_point:
        changed = False
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
                tensor_changed = update_tensor_node_dims_mapping(
                    dist_context, node, fwd=True)
                if tensor_changed:
                    changed = True
            if node.is_op() and node.op() is not None:
                op_changed = update_op_node_dims_mapping(
                    dist_context, node, fwd=True)
                if op_changed:
                    changed = True
        for node in reversed(all_nodes):
            if node.is_var() and node.var() is not None:
                tensor_changed = update_tensor_node_dims_mapping(
                    dist_context, node, fwd=False)
                if tensor_changed:
                    changed = True
            if node.is_op() and node.op() is not None:
                op_changed = update_op_node_dims_mapping(
                    dist_context, node, fwd=False)
                if op_changed:
                    changed = True
        if changed:
            reach_fix_point = False
        else:
            reach_fix_point = True

    # Copy the corresponding distributed attribute from graph to program
    dist_context.copy_distribute_attr_from_graph_to_program(graph, program)
    dist_context.clear_distributed_attr_for_graph()

    # Do the validation check and amend some completion
    dist_context.amend_distributed_attr_for_program()

    return program
C
caozhou 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769


def complete_backward_annotation(auto_parallel_main_prog, dist_context):
    """Complete the annotation of vars and ops in the backward phase for parallel program."""

    def _is_grad_var_name(name):
        if "@GRAD" in name:
            return True
        return False

    grad_start_idx = None
    for idx, op in enumerate(auto_parallel_main_prog.global_block().ops):
        for var_name in op.output_arg_names:
            # TODO: use _is_loss_op to judge
            if "@GRAD" in var_name and op.type == "fill_constant":
                grad_start_idx = idx
                break
    assert grad_start_idx is not None, "No backward procedure found in this program."

    ops = list(auto_parallel_main_prog.global_block().ops)
    vars = auto_parallel_main_prog.global_block().vars
    for idx in range(grad_start_idx, len(ops)):
        # complete the loss op
        if idx == grad_start_idx:
            grad_var = vars[ops[idx].output_arg_names[0]]
            grad_var_name = grad_var.name
            forward_var_name = grad_var_name[:grad_var_name.find("@GRAD")]
            forward_var = vars[forward_var_name]
            tensor_attr = TensorDistributedAttribute(grad_var, dist_context)
            process_mesh = dist_context.get_tensor_distributed_attr_for_program(
                forward_var).get_process_mesh()
            dims_mapping = dist_context.get_tensor_distributed_attr_for_program(
                forward_var).get_dims_mapping()
            tensor_attr.set_dims_mapping(dims_mapping)
            tensor_attr.set_process_mesh(process_mesh)
            dist_context.set_tensor_distributed_attr_for_program(grad_var,
                                                                 tensor_attr)
            op_attr = OperatorDistributedAttribute(ops[idx], dist_context)
            op_attr.set_process_mesh(process_mesh)
            dist_context.set_op_distributed_attr_for_program(ops[idx], op_attr)

            # in the data parallel mode, the loss op followed by scale op.
            if ops[idx + 1].type == "scale" and grad_var_name in ops[idx + 1].input_arg_names \
                    and grad_var_name in ops[idx + 1].output_arg_names:
                op_attr = OperatorDistributedAttribute(ops[idx + 1],
                                                       dist_context)
                op_attr.set_process_mesh(process_mesh)
                dist_context.set_op_distributed_attr_for_program(ops[idx + 1],
                                                                 op_attr)
            continue

        # complete the annotation of the optimizer op.
        # TODO: use _is_optimizer_op to judge
        if "Grad" in ops[idx].input_names and "Param" in ops[idx].input_names:
            assert len(ops[idx].input(
                "Param")) == 1, "Only support one-to-one now."
            assert len(ops[idx].input(
                "Grad")) == 1, "Only support one-to-one now."
            var = vars[ops[idx].input("Param")[0]]
            grad_var = vars[ops[idx].input("Grad")[0]]
            process_mesh = dist_context.get_tensor_distributed_attr_for_program(
                var).get_process_mesh()
            dims_mapping = dist_context.get_tensor_distributed_attr_for_program(
                var).get_dims_mapping()
            op_attr = OperatorDistributedAttribute(ops[idx], dist_context)
            op_attr.set_process_mesh(process_mesh)
            op_attr.set_input_dims_mapping(grad_var.name, dims_mapping)
            dist_context.set_op_distributed_attr_for_program(ops[idx], op_attr)
            continue

        # complete the c_allreduce_sum op for gradient in the data parallel mode.
        if ops[idx].type == "c_allreduce_sum" and ops[
                idx].input_arg_names == ops[idx].output_arg_names:
            grad_var = vars[ops[idx].output_arg_names[0]]
            op_attr = OperatorDistributedAttribute(ops[idx], dist_context)
            process_mesh = dist_context.get_tensor_distributed_attr_for_program(
                grad_var).get_process_mesh()
            op_attr.set_process_mesh(process_mesh)
            dist_context.set_op_distributed_attr_for_program(ops[idx], op_attr)
            continue

        # complete the annotation of grad op
        grad_op = ops[idx]
        for i, op in enumerate(ops[:grad_start_idx]):
            match_op = None
            grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(op.desc,
                                                                      set(),
                                                                      [])
            grad_op_input = []
            for input_arg_name in grad_op.desc.input_arg_names():
                if "@GRAD" in input_arg_name:
                    name = input_arg_name[:input_arg_name.find("@GRAD") + 5]
                    grad_op_input.append(name)
                else:
                    grad_op_input.append(input_arg_name)

            # like sum op: the count of grad op will larger than 1
            if len(grad_op_desc_list) > 1:
                for grad_op_desc in grad_op_desc_list:
                    if grad_op_input == grad_op_desc.input_arg_names() \
                            and grad_op.desc.type() == grad_op_desc.type():
                        match_op = op
                        break
            elif len(grad_op_desc_list) == 1:
                if grad_op_input == grad_op_desc_list[0].input_arg_names() \
                        and grad_op.desc.type() == grad_op_desc_list[0].type():
                    match_op = op

            if match_op is not None:
                op_attr = dist_context.get_op_distributed_attr_for_program(op)
                grad_op_attr = OperatorDistributedAttribute(grad_op,
                                                            dist_context)
                grad_op_attr.set_process_mesh(op_attr.get_process_mesh())
                for var_name in grad_op.input_arg_names:
                    if "@GRAD" in var_name:
                        dims_mapping = dist_context.get_tensor_distributed_attr_for_program(
                            vars[var_name]).get_dims_mapping()
                        grad_op_attr.set_input_dims_mapping(var_name,
                                                            dims_mapping)
                    else:
                        dims_mapping = op_attr.get_input_dims_mapping(var_name)
                        grad_op_attr.set_input_dims_mapping(var_name,
                                                            dims_mapping)
                dist_context.set_op_distributed_attr_for_program(grad_op,
                                                                 grad_op_attr)

                for var_name in grad_op.output_arg_names:
                    if "@GRAD" in var_name:
                        forward_var = vars[var_name[:var_name.find("@GRAD")]]
                        tensor_attr = TensorDistributedAttribute(vars[var_name],
                                                                 dist_context)
                        process_mesh = grad_op_attr.get_process_mesh()
                        dims_mapping = grad_op_attr.get_input_dims_mapping(
                            forward_var.name)
                        tensor_attr.set_process_mesh(process_mesh)
                        tensor_attr.set_dims_mapping(dims_mapping)
                        dist_context.set_tensor_distributed_attr_for_program(
                            vars[var_name], tensor_attr)
                break

        # complete the annotation of sum op for multiple renamed grad var
        if grad_op.type == "sum" and all(
                map(_is_grad_var_name, grad_op.input_arg_names)):
            assert len(grad_op.output_arg_names
                       ) == 1, "The output count of sum op should be one."
            grad_op_attr = OperatorDistributedAttribute(grad_op, dist_context)
            for var_name in grad_op.input_arg_names:
                if "@GRAD" in var_name:
                    forward_var = vars[var_name[:var_name.find("@GRAD")]]
                    dims_mapping = dist_context.get_tensor_distributed_attr_for_program(
                        forward_var).get_dims_mapping()
                    grad_op_attr.set_input_dims_mapping(var_name, dims_mapping)
            for var_name in grad_op.output_arg_names:
                forward_var = vars[var_name[:var_name.find("@GRAD")]]
                tensor_attr = TensorDistributedAttribute(vars[var_name],
                                                         dist_context)
                process_mesh = dist_context.get_tensor_distributed_attr_for_program(
                    forward_var).get_process_mesh()
                dims_mapping = dist_context.get_tensor_distributed_attr_for_program(
                    forward_var).get_dims_mapping()
                tensor_attr.set_dims_mapping(dims_mapping)
                tensor_attr.set_process_mesh(process_mesh)
                dist_context.set_tensor_distributed_attr_for_program(
                    vars[var_name], tensor_attr)
                grad_op_attr.set_process_mesh(
                    dist_context.get_tensor_distributed_attr_for_program(
                        forward_var).get_process_mesh())
            dist_context.set_op_distributed_attr_for_program(grad_op,
                                                             grad_op_attr)