dropout_op.cc 5.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/dropout_op.h"
P
phlrain 已提交
16
#include <string>
X
Xinghai Sun 已提交
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
28 29 30 31
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim("Out", x_dims);
32
    if (ctx->Attrs().Get<bool>("is_test") == false) {
Q
Qiao Longfei 已提交
33
      ctx->SetOutputDim("Mask", x_dims);
34
    }
Q
Qiao Longfei 已提交
35
    ctx->ShareLoD("X", /*->*/ "Out");
X
Xinghai Sun 已提交
36 37 38 39 40
  }
};

class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
41
  void Make() override {
X
Xinghai Sun 已提交
42 43
    AddInput("X", "The input of dropout op.");
    AddOutput("Out", "The output of dropout op.");
44
    AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate();
X
Xinghai Sun 已提交
45

K
Kexin Zhao 已提交
46
    AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
C
chengduoZH 已提交
47 48
        .SetDefault(.5f)
        .AddCustomChecker([](const float& drop_p) {
C
refine  
chengduoZH 已提交
49 50
          PADDLE_ENFORCE(drop_p >= 0.0f && drop_p <= 1.0f,
                         "'dropout_prob' must be between 0.0 and 1.0.");
C
chengduoZH 已提交
51
        });
52
    AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
53 54 55 56 57 58 59
    AddAttr<bool>("fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(false);
K
Kexin Zhao 已提交
60
    AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);
P
phlrain 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_prob)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
        "   inference: out = input * dropout_prob"
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_prob )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string& type) {
          PADDLE_ENFORCE(
              type == "downgrade_in_infer" || type == "upscale_in_train",
              "dropout_implementation can only be downgrade_in_infer or "
              "upscale_in_train");
        });
K
Kexin Zhao 已提交
84

85 86 87
    AddComment(R"DOC(
Dropout Operator.

K
Kexin Zhao 已提交
88
Dropout refers to randomly dropping out units in a nerual network. It is a
89 90
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
91
the given dropout probability) the outputs of some units to zero, while others
K
Kexin Zhao 已提交
92 93
are set equal to their corresponding inputs.

94
)DOC");
X
Xinghai Sun 已提交
95 96 97 98 99 100 101
  }
};

class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

102
  void InferShape(framework::InferShapeContext* ctx) const override {
103 104
    PADDLE_ENFORCE_EQ(ctx->Attrs().Get<bool>("is_test"), false,
                      "GradOp is only callable when is_test is false");
Q
Qiao Longfei 已提交
105 106 107 108 109 110 111 112

    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Mask must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) must not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
X
Xinghai Sun 已提交
113
    PADDLE_ENFORCE_EQ(x_dims, out_dims,
X
Xinghai Sun 已提交
114
                      "Dimensions of Input(X) and Out@Grad must be the same.");
Q
Qiao Longfei 已提交
115
    auto mask_dims = ctx->GetInputDim("Mask");
X
Xinghai Sun 已提交
116 117
    PADDLE_ENFORCE_EQ(x_dims, mask_dims,
                      "Dimensions of Input(X) and Mask must be the same.");
118

Q
Qiao Longfei 已提交
119
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
X
Xinghai Sun 已提交
120 121 122 123 124 125 126
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
127
REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
128 129
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);
130
REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
131 132
    dropout, ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, double>);
X
Xinghai Sun 已提交
133
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
134
    dropout_grad,
P
phlrain 已提交
135 136
    ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, double>);