dropout_op.cc 4.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/dropout_op.h"
X
Xinghai Sun 已提交
16 17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27 28 29 30
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim("Out", x_dims);
31
    if (ctx->Attrs().Get<bool>("is_test") == false) {
Q
Qiao Longfei 已提交
32
      ctx->SetOutputDim("Mask", x_dims);
33
    }
Q
Qiao Longfei 已提交
34
    ctx->ShareLoD("X", /*->*/ "Out");
X
Xinghai Sun 已提交
35 36 37 38 39
  }
};

class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
40
  DropoutOpMaker(OpProto* proto, OpAttrChecker* op_checker)
X
Xinghai Sun 已提交
41 42 43
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The input of dropout op.");
    AddOutput("Out", "The output of dropout op.");
44
    AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate();
X
Xinghai Sun 已提交
45

K
Kexin Zhao 已提交
46
    AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
C
chengduoZH 已提交
47 48
        .SetDefault(.5f)
        .AddCustomChecker([](const float& drop_p) {
C
refine  
chengduoZH 已提交
49 50
          PADDLE_ENFORCE(drop_p >= 0.0f && drop_p <= 1.0f,
                         "'dropout_prob' must be between 0.0 and 1.0.");
C
chengduoZH 已提交
51
        });
52
    AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
53 54 55 56 57 58 59
    AddAttr<bool>("fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(false);
K
Kexin Zhao 已提交
60 61
    AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);

62 63 64
    AddComment(R"DOC(
Dropout Operator.

K
Kexin Zhao 已提交
65
Dropout refers to randomly dropping out units in a nerual network. It is a
66 67
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
68
the given dropout probability) the outputs of some units to zero, while others
K
Kexin Zhao 已提交
69 70
are set equal to their corresponding inputs.

71
)DOC");
X
Xinghai Sun 已提交
72 73 74 75 76 77 78
  }
};

class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

79
  void InferShape(framework::InferShapeContext* ctx) const override {
80 81
    PADDLE_ENFORCE_EQ(ctx->Attrs().Get<bool>("is_test"), false,
                      "GradOp is only callable when is_test is false");
Q
Qiao Longfei 已提交
82 83 84 85 86 87 88 89

    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Mask must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) must not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
X
Xinghai Sun 已提交
90
    PADDLE_ENFORCE_EQ(x_dims, out_dims,
X
Xinghai Sun 已提交
91
                      "Dimensions of Input(X) and Out@Grad must be the same.");
Q
Qiao Longfei 已提交
92
    auto mask_dims = ctx->GetInputDim("Mask");
X
Xinghai Sun 已提交
93 94
    PADDLE_ENFORCE_EQ(x_dims, mask_dims,
                      "Dimensions of Input(X) and Mask must be the same.");
95

Q
Qiao Longfei 已提交
96
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
X
Xinghai Sun 已提交
97 98 99 100 101 102 103
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
104
REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
105 106
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);
107
REGISTER_OP_CPU_KERNEL(
K
Kexin Zhao 已提交
108
    dropout, ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, float>);
X
Xinghai Sun 已提交
109
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
110 111
    dropout_grad,
    ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, float>);