reduce_op.cu.h 34.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include "paddle/fluid/framework/array.h"
33
#include "paddle/fluid/framework/op_registry.h"
34 35
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
36
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
37
#include "paddle/fluid/operators/cast_op.h"
38
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
39 40
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
41
#include "paddle/fluid/platform/fast_divmod.h"
42

43 44
// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
45
#define REDUCE_VEC_SIZE 4
46

47 48 49
namespace paddle {
namespace operators {

50
namespace kps = paddle::operators::kernel_primitives;
51

52
namespace details {
53 54 55 56 57 58 59 60 61 62

static inline int GetLastPow2(int n) {
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
  return std::max(1, n - (n >> 1));
}

63 64
static inline int64_t AlignUp(int64_t a, int64_t b) { return (a + b - 1) / b; }

65 66 67
// get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny
static inline std::vector<int> GetDimStrides(const std::vector<int>& dims,
                                             const std::vector<int>& idx) {
68 69 70 71 72 73 74 75 76 77
  int n = static_cast<int>(idx.size());
  if (n == 0) return std::vector<int>();
  std::vector<int> strides(n);
  strides.back() = 1;
  for (int i = n - 2; i >= 0; --i) {
    strides[i] = strides[i + 1] * dims[idx[i + 1]];
  }
  return strides;
}

78 79
// get blockDim for reduceLastDim and reduceAny
static inline int GetBlockDim(int block_dim) {
80 81 82
  return block_dim >= kps::details::kReduceMaxThread
             ? kps::details::kReduceMaxThread
             : GetLastPow2(block_dim);
83 84
}

85 86
// check reduce rand is valid
static inline void CheckReduceRank(int reduce_rank, int rank) {
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  if (rank % 2 == 0) {
    PADDLE_ENFORCE_EQ(reduce_rank, rank / 2,
                      platform::errors::InvalidArgument(
                          "ReduceOp: invalid reduce rank. When rank = %d, "
                          "reduce_rank must be %d, but got %d.",
                          rank, rank / 2, reduce_rank));
  } else {
    auto lower_rank = (rank - 1) / 2;
    auto upper_rank = (rank + 1) / 2;
    PADDLE_ENFORCE_EQ(
        reduce_rank == lower_rank || reduce_rank == upper_rank, true,
        platform::errors::InvalidArgument(
            "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
            "must be %d or %d, but got %d.",
            rank, lower_rank, upper_rank, reduce_rank));
  }
}

105
// convert dims from vector to array
106
template <typename T, size_t ElementCount, typename VectorLikeType>
107
static inline paddle::framework::Array<T, ElementCount> VectorToArray(
108
    const VectorLikeType& vec) {
109
  PADDLE_ENFORCE_LE(vec.size(), ElementCount,
110 111
                    platform::errors::InvalidArgument(
                        "Cub reduce Array: size not match. Received "
112
                        "vec.size() %d > ElementCount %d.",
113 114 115
                        vec.size(), ElementCount));
  size_t n = static_cast<size_t>(vec.size());
  paddle::framework::Array<T, ElementCount> ret;
116 117 118
  for (size_t i = 0; i < n; ++i) {
    ret[i] = vec[i];
  }
119 120 121
  return ret;
}

122
}  // namespace details
123

124
using Tensor = framework::Tensor;
125
constexpr int kMaxRank = framework::DDim::kMaxRank;
126

127
enum ReduceType {
128
  kReduceLastDim = 0x01,    // when reduce_dim[0] == x_dim.size() - 1;
129
  kReduceHigherDim = 0x02,  // ReduceFirstDim or reduceSecondDim
130
  kReduceAny = 0x03,        // when reduce_dim.size() > 1
131 132
};

133 134 135 136 137
struct IndexCalculator {
  IndexCalculator(int dim, const std::vector<int>& cal_dims,
                  const std::vector<int>& cal_strides,
                  const std::vector<int>& full_strides)
      : dim(dim) {
138 139
    dims = details::VectorToArray<int, kMaxRank>(cal_dims);
    strides = details::VectorToArray<int, kMaxRank>(full_strides);
140
    std::vector<platform::FastDivMod> cal_divmoders;
141 142
    // fast divmod
    for (auto i : cal_strides) {
143
      cal_divmoders.push_back(platform::FastDivMod(i));
144
    }
145
    divmoders =
146
        details::VectorToArray<platform::FastDivMod, kMaxRank>(cal_divmoders);
147 148
  }

149
  __device__ inline int operator()(int offset) const {
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    int index = 0;
#pragma unroll
    for (int i = 0; i < kMaxRank; ++i) {
      if (i == dim) {
        break;
      }
      auto divmod = divmoders[i].Divmod(offset);
      index += (divmod.val[0] * strides[dims[i]]);
      offset = divmod.val[1];
    }
    return index;
  }

  int dim;
  framework::Array<int, kMaxRank> dims;
  framework::Array<int, kMaxRank> strides;
166
  framework::Array<platform::FastDivMod, kMaxRank> divmoders;
167 168
};

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
template <bool ReduceLastDim = false>
struct ReduceIndexMapping {
  const kps::DimConfig dim;
  HOSTDEVICE explicit ReduceIndexMapping(const kps::DimConfig& dims)
      : dim(dims) {}

  __device__ __forceinline__ int BlockIdX() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    } else {
      return cluster_id() % dim.split_num_x;
    }
#else
    return blockIdx.x;
#endif
  }

  __device__ __forceinline__ int BlockIdY() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return (cluster_id() % dim.split_num_x);
    } else {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    }
#else
    return blockIdx.y;
#endif
  }

  __device__ __forceinline__ int BlockDimX() {
#ifdef PADDLE_WITH_XPU2
    return dim.deal_size_x;
#else
    return blockDim.x;
#endif
  }

  __device__ __forceinline__ int BlockDimY() {
#ifdef PADDLE_WITH_XPU2
    return dim.deal_size_y;
#else
    return blockDim.y;
#endif
  }

  __device__ __forceinline__ int GridDimX() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.split_num_y;
    } else {
      return dim.split_num_x;
    }
#else
    return gridDim.x;
#endif
  }

  __device__ __forceinline__ int GridDimY() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.split_num_x;
    } else {
      return dim.split_num_y;
    }
#else
    return gridDim.y;
#endif
  }

  __device__ __forceinline__ int GetLoopSize() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.deal_size_y;
    } else {
      return dim.deal_size_x;
    }
#else
    return 1;
#endif
  }
};

252 253
// when reduce_type == kReduceLastDim this struct will be used
// for higher performance
254 255
struct OneDimIndexCal {
  explicit OneDimIndexCal(int num) : stride(num) {}
256 257 258 259 260

  __device__ inline int operator()(int index) const { return index * stride; }
  int stride;
};

261 262 263
// reduce config
template <typename Ty>
struct ReduceConfig {
264 265 266
  ReduceConfig(const std::vector<int>& origin_reduce_dims,
               const std::vector<int>& origin_x_dim)
      : reduce_dims_origin(origin_reduce_dims), x_dim(origin_x_dim) {}
267 268 269 270 271

  // get the parameters of reduceKernel
  void Run() {
    // step1: update the reduce_dim left_dim and x_dim
    SetReduceDim();
272

273 274
    // step2: get the strides of dim for reduceAny and reduceLastDim
    SetStrides();
275

276 277
    // step3: get the type of reduce
    SetReduceType();
278

279 280 281 282 283 284
    // step4: set the block and grid for launch kernel
    SetBlockDim();
  }

  // when should_reduce_again is true, we need malloc temp space for temp data
  void SetOutputData(Ty* y_data, const platform::Place& place,
285
                     framework::Tensor* tmp) {
286
    if (should_reduce_again) {
287
      output_data = tmp->mutable_data<Ty>(
288
          framework::make_ddim(
289
              {static_cast<int64_t>(left_num * grid.z * grid.y * sizeof(Ty))}),
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
          place);
    } else {
      output_data = y_data;
    }
  }

 private:
  // set reduce_dim, left_dim and update x_dim
  // eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1]
  //     --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1]
  void SetReduceDim() {
    std::set<int> reduce_set;
    for (auto e : reduce_dims_origin) {
      auto pos = e >= 0 ? e : e + x_dim.size();
      reduce_set.insert(pos);
    }
306

307 308
    std::vector<int> reduce_dim_temp(reduce_set.begin(), reduce_set.end());
    std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end());
309 310 311 312 313 314 315 316 317 318

    // update reduce_dim and x_dim
    std::vector<int> x_new_dim;

    reduce_dim.push_back(reduce_dim_temp[0]);
    x_new_dim.push_back(x_dim[0]);

    int idx_reduce = 1;
    int num = 0;

319
    if (reduce_dim_temp.size() > 1) {
320 321 322 323 324 325 326 327 328 329 330 331 332 333
      for (int i = 1; i < x_dim.size(); i++) {
        if ((idx_reduce < reduce_dim_temp.size()) &&
            (i == reduce_dim_temp[idx_reduce])) {
          int result =
              reduce_dim_temp[idx_reduce] - reduce_dim[reduce_dim.size() - 1];
          bool is_equal = ((result - num) == 1);
          if (is_equal) {
            x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
            num++;
          } else {
            reduce_dim.push_back(reduce_dim_temp[idx_reduce] - num);
            x_new_dim.push_back(x_dim[i]);
          }
          idx_reduce++;
334
        } else {
335
          x_new_dim.push_back(x_dim[i]);
336 337 338
        }
      }
    } else {
339
      x_new_dim = x_dim;
340 341
    }

342 343 344 345 346
    // update x_dim
    x_dim = x_new_dim;
    std::vector<int>().swap(x_new_dim);

    std::vector<int> reduce_dim_new;
347 348 349 350 351
    int is_reduced = 0;
    for (auto e : reduce_dim) {
      is_reduced |= 1 << e;
    }

352 353
    std::vector<int>().swap(reduce_dim);

354 355
    for (int i = 0; i < x_dim.size(); i++) {
      if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
356
        x_new_dim.push_back(x_dim[i]);
357
        if ((is_reduced >> i) & 1)
358
          reduce_dim_new.push_back(x_new_dim.size() - 1);
359
      } else {
360
        x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
361 362 363
      }
    }

364 365
    x_dim = x_new_dim;
    reduce_dim = reduce_dim_new;
366 367 368 369 370 371 372 373 374 375 376 377 378

    int x_rank = static_cast<int>(x_dim.size());
    std::set<int> left_set;

    for (int i = 0; i < x_rank; ++i) {
      left_set.insert(i);
    }

    for (auto e : reduce_dim) {
      left_set.erase(e);
    }

    left_dim.assign(left_set.begin(), left_set.end());
379 380

    // if the last dim gets involved in reduction
381
    reduce_last_dim = (reduce_dim.back() == x_dim.size() - 1);
382 383 384 385 386 387 388 389 390 391 392 393
  }

  // set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny
  // eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1]
  //     --SetStrides--> x_strides= [6,1], reduce_strides = [1],
  //     left_strides = [1]
  void SetStrides() {
    std::vector<int> idx_dim;
    for (int i = 0; i < x_dim.size(); i++) {
      idx_dim.push_back(i);
    }

394 395 396
    x_strides = details::GetDimStrides(x_dim, idx_dim);
    reduce_strides = details::GetDimStrides(x_dim, reduce_dim);
    left_strides = details::GetDimStrides(x_dim, left_dim);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];

    left_num = 1;
    if (left_dim.size()) {
      left_num = left_strides[0] * x_dim[left_dim[0]];
    }
  }

  // get the reduceType
  // eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim
  //     x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim
  //     x_dim = [8] reduce_dim = [0] --> reduceAll
  //     x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny
  void SetReduceType() {
    int rank = x_dim.size();
    int reduce_rank = reduce_dim.size();
413 414 415
    bool is_last_dim =
        (rank == 2) && (reduce_rank == 1) && (reduce_dim[0] == 1);
    if (rank == reduce_rank || is_last_dim) {
416
      reduce_type = static_cast<int>(ReduceType::kReduceLastDim);
417
    } else if (reduce_rank == 1) {
418 419 420 421 422 423 424 425
// ReduceFirstDim and reduceSecondDim
#ifdef PADDLE_WITH_XPU2
      if (reduce_dim[0] == 0) {
        reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
      } else {
        reduce_type = static_cast<int>(ReduceType::kReduceAny);
      }
#else
426
      reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
427
#endif
428 429 430 431 432
    } else {
      reduce_type = static_cast<int>(ReduceType::kReduceAny);
    }
  }

433 434 435
  void SetBlockDimForReduceAny(dim3* block_dim, dim3* grid_dim) {
    constexpr int min_reduce_num_per_thread = 16;
    constexpr int max_reduce_num_per_thread = 256;
436
    constexpr int max_num_threads = kps::details::kReduceMaxThread;
437 438

    // set block size.
439
    // 1. If reduce_last_dim == true, all the threads whose threadIdx.y are same
440 441
    //    will process the reduction for one output.
    //    The number of output for one block is blockDim.y;
442
    // 2. If reduce_last_dim == false, different threadIdx.x will process
443 444 445 446
    //    different reduction and gets the output separately. If it is
    //    necessary, it should reduce in block y.
    //    The number of output for one block is blockDim.x;
    int block_x, block_y;
447
    int grid_num, reduce_num_per_thread;
448 449 450
    if (reduce_last_dim) {
      block_x = details::GetBlockDim(reduce_num);
      block_y = details::GetBlockDim(left_num);
451 452 453
      block_dim->x = block_x;
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
454 455
      grid_num = details::AlignUp(left_num, block_dim->y);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->x);
456
    } else {
457 458
      block_x = details::GetBlockDim(left_num);
      block_y = details::GetBlockDim(reduce_num);
459 460 461 462 463
      block_dim->x = std::min(block_x, 32);
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      block_dim->x =
          std::min(block_x, static_cast<int>(max_num_threads / block_dim->y));
464 465
      grid_num = details::AlignUp(left_num, block_dim->x);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->y);
466 467
    }
    int device_id = platform::GetCurrentDeviceId();
468
    int max_mp = platform::GetGPUMultiProcessors(device_id);
469
    int max_threads_per_mp =
470
        platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
471 472 473 474 475 476 477 478 479 480 481 482 483 484
    int max_threads = max_threads_per_mp * max_mp;
    int num_threads = block_dim->x * block_dim->y;
    int max_num_blocks = max_threads / num_threads;

    // set grid size.
    // Whether to set grid.y larger than 1, there are 3 following rules:
    // 1. The number that each thread process should no less than
    //    min_reduce_num_per_threadbut no more than max_reduce_num_per_thread;
    // 2. It should maximize the utilization of SM.
    // So we choose the minimum between input_split_num_1 and input_split_num_3
    // to make each thread process as mush data as possible. Meanwhile,
    // the number cannot be larger than max_reduce_num_per_thread, so we
    // choose the maximum between the result above and input_split_num_2.
    int input_split_num_1 =
485
        details::AlignUp(reduce_num_per_thread, min_reduce_num_per_thread);
486
    int input_split_num_2 =
487 488
        details::AlignUp(reduce_num_per_thread, max_reduce_num_per_thread);
    int input_split_num_3 = details::AlignUp(max_num_blocks, grid_num);
489 490 491 492 493 494 495 496 497 498

    grid_dim->x = grid_num;
    grid_dim->y = std::max(std::min(input_split_num_1, input_split_num_3),
                           input_split_num_2);
    // if grid.y > 1, we need launch reduce kernel again.
    if (grid_dim->y > 1) {
      should_reduce_again = true;
    }
  }

499 500 501 502
  // set block and grid for launch kernel
  // for ReduceHigherDim: if block is enough -> splite reduce_num
  //                     else init block(32, 1) grid(block_num, 1)
  // for others: block(block_num, 1) , grid(left_num, 1)
503 504 505 506 507 508 509
  void SetBlockDimForHigher(dim3* block_dim, dim3* grid_dim) {
    int last_dim_num = x_dim.back();
    // update left_num
    int grid_z = left_num / last_dim_num;
    left_num = last_dim_num;
    grid_dim->z = grid_z;
    int device_id = platform::GetCurrentDeviceId();
510
    int max_mp = platform::GetGPUMultiProcessors(device_id);
511
    int max_threads_per_mp =
512
        platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    int max_threads = max_threads_per_mp * max_mp;
    // init
    int num_block = (max_threads / left_num);
    block_dim->x = details::GetBlockDim(left_num);
    grid_dim->x = details::AlignUp(left_num, block_dim->x);
    blocking_size = reduce_num;

    if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
      blocking_size = details::GetLastPow2(reduce_num / num_block);
      if (blocking_size <= 1) {
        blocking_size = details::GetLastPow2(sqrt(reduce_num));
      } else if (blocking_size * 2 < reduce_num) {
        blocking_size *= 2;
      }
      should_reduce_again = true;
      grid_dim->y = details::AlignUp(reduce_num, blocking_size);
    }
  }

532 533
  void SetBlockDim() {
    // init
534
    int block_num = details::GetBlockDim(reduce_num);
535
    should_reduce_again = false;
536 537
    dim3 block_dim(block_num, 1, 1);
    dim3 grid_dim(left_num, 1, 1);
538
    blocking_size = reduce_num;
539 540 541 542 543 544 545 546 547 548 549 550 551
#ifdef PADDLE_WITH_XPU2
    if (reduce_last_dim) {
      block_dim.x = 128;
      block_dim.y = reduce_num;
      grid_dim.x = 8;
      grid_dim.y = 1;
    } else {
      block_dim.x = 128;
      block_dim.y = left_num;
      grid_dim.x = 8;
      grid_dim.y = 1;
    }
#else
552
    if (reduce_type == ReduceType::kReduceHigherDim) {
553
      SetBlockDimForHigher(&block_dim, &grid_dim);
554
    } else {
555
      SetBlockDimForReduceAny(&block_dim, &grid_dim);
556
    }
557
#endif
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

    block = block_dim;
    grid = grid_dim;
  }

 public:
  std::vector<int> reduce_dims_origin;
  std::vector<int> reduce_dim;
  std::vector<int> x_dim;
  std::vector<int> left_dim;
  std::vector<int> x_strides;
  std::vector<int> left_strides;
  std::vector<int> reduce_strides;

  int reduce_type;
  int reduce_num;
  int left_num;
  int blocking_size;
  bool should_reduce_again;
577
  bool reduce_last_dim;
578 579 580 581 582 583

  Ty* output_data;

  dim3 block;
  dim3 grid;
};
584

585
// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
586 587
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
588
template <typename Tx, typename Ty, typename MPType, typename ReduceOp,
589 590 591 592 593 594
          typename TransformOp, typename Calculator>
__global__ void ReduceAnyKernel(const Tx* x, Ty* y, ReduceOp reducer,
                                TransformOp transformer, MPType init,
                                int reduce_num, int left_num,
                                bool reduce_last_dim,
                                const Calculator reduce_index_calculator,
595 596
                                const Calculator left_index_calculator,
                                const kps::DimConfig dim) {
597
  int input_idx, left_idx, stride;
598 599
  int block_size = 0;
  bool need_store = true;
600
  int loop_left = 0;
601
  int tid = 0;
602
  // the last dim gets involved in reduction
603 604
  int store_offset = 0;
  int stride_left = 0;
605
  if (reduce_last_dim) {
606 607 608 609 610 611 612 613 614
    auto block = ReduceIndexMapping<true>(dim);
    input_idx = block.BlockIdY() * block.BlockDimX();
    left_idx = block.BlockIdX() * block.BlockDimY() + THREAD_ID_Y;
    stride = block.GridDimY() * block.BlockDimX();
    block_size = block.BlockDimX();
    need_store = (THREAD_ID_X == 0) && (left_idx < left_num);
    store_offset = block.BlockIdY() * left_num + left_idx;
    loop_left = min(block.GetLoopSize(), left_num - left_idx);
    stride_left = 1;
615
    tid = threadIdx.x;
616
  } else {
617 618 619 620 621 622 623 624 625
    auto block = ReduceIndexMapping<false>(dim);
    input_idx = block.BlockIdY() * block.BlockDimY();
    left_idx = block.BlockIdX() * block.BlockDimX() + THREAD_ID_X;
    stride = block.GridDimY() * block.BlockDimY();
    block_size = block.BlockDimY();
    need_store = (THREAD_ID_Y == 0) && (left_idx < left_num);
    loop_left = min(block.GetLoopSize(), left_num - left_idx);
    stride_left = block.BlockDimX() * block.GridDimX();
    store_offset = block.BlockIdY() * left_num + left_idx;
626
    tid = threadIdx.y;
627
  }
628 629
  // calculate the offset, means the addr where each thread really start.
  // 1. reduce for each thread
630 631 632 633 634 635
  MPType input_compute[REDUCE_VEC_SIZE];
  Tx input_reg[REDUCE_VEC_SIZE];
  for (int i = 0; i < loop_left; i += stride_left) {
    int input_offset = left_index_calculator(left_idx + i);
    const Tx* input = x + input_offset;
    MPType reduce_var = init;
636 637
    // load REDUCE_VEC_SIZE data once, and then compute
    int bound = reduce_num - (REDUCE_VEC_SIZE - 1) * stride;
638 639
    for (; input_idx + block_size < bound;
         input_idx += REDUCE_VEC_SIZE * stride) {
640 641 642 643 644 645 646 647 648
      kps::ReadDataReduce<Tx, Tx, 1, REDUCE_VEC_SIZE, 1, 1, Calculator,
                          kps::IdentityFunctor<Tx>, false>(
          &input_reg[0], input, input_idx, reduce_index_calculator, 1,
          reduce_num, 1, stride, kps::IdentityFunctor<Tx>(), reduce_last_dim);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &input_compute[0], &input_reg[0], transformer);
      kps::Reduce<MPType, REDUCE_VEC_SIZE, 1, 1, ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &input_compute[0], reducer, reduce_last_dim);
649
    }
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664
    kps::Init<MPType, REDUCE_VEC_SIZE>(&input_compute[0], init);
    kps::ReadDataReduce<Tx, MPType, 1, REDUCE_VEC_SIZE, 1, 1, Calculator,
                        TransformOp, true>(
        &input_compute[0], input, input_idx, reduce_index_calculator, 1,
        reduce_num - input_idx, 1, stride, transformer, reduce_last_dim);
    kps::Reduce<MPType, REDUCE_VEC_SIZE, 1, 1, ReduceOp,
                kps::details::ReduceMode::kLocalMode>(
        &reduce_var, &input_compute[0], reducer, reduce_last_dim);

    kps::Reduce<MPType, 1, 1, 1, ReduceOp, kps::details::kGlobalMode>(
        &reduce_var, &reduce_var, reducer, reduce_last_dim);
    if (need_store) {
      y[store_offset + i] = static_cast<Ty>(reduce_var);
    }
665 666 667
  }
}

668 669
template <typename Tx, typename Ty, typename MPType, typename ReduceOp,
          typename TransformOp>
670 671 672
__global__ void ReduceHigherDimKernel(const Tx* x, Ty* y, ReduceOp reducer,
                                      TransformOp transformer, MPType init,
                                      int reduce_num, int left_num,
673 674
                                      int blocking_size,
                                      const kps::DimConfig dim) {
675 676
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
  auto block = ReduceIndexMapping<false>(dim);
  int idy = block.BlockIdY() * blocking_size;
  int idx = block.BlockIdX() * block.BlockDimX();
  int idz = BLOCK_ID_Z * left_num;
  int stride = dim.split_num_x * dim.deal_size_x;
  int size = left_num - dim.rem_x;
  int loop_size = min(reduce_num - idy, blocking_size);
  int store_offset = block.BlockIdY() * left_num + idz * block.GridDimY();
  int block_offset = idy * left_num + idz * reduce_num;
  const Tx* input = x + block_offset;
  Tx reduce_input;
  for (; idx < size; idx += stride) {
    MPType reduce_var = init;
    MPType reduce_compute = init;
    for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
      kps::ReadData<Tx, Tx, 1, 1, 1, false>(&reduce_input,
                                            input + loop_idx * left_num + idx,
                                            block.BlockDimX(), 1, 1, left_num);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &reduce_compute, &reduce_input, transformer);
      kps::Reduce<MPType, 1, 1, 1, ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &reduce_compute, reducer, false);
    }
    Ty result = static_cast<Ty>(reduce_var);
    kps::WriteData<Ty, 1, 1, 1, false>(y + store_offset + idx, &result,
                                       block.BlockDimX());
  }

  if (idx < left_num) {
    MPType reduce_var = init;
    MPType reduce_compute = init;
    for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
      kps::ReadData<Tx, Tx, 1, 1, 1, true>(&reduce_input,
                                           input + loop_idx * left_num + idx,
                                           dim.rem_x, 1, 1, left_num);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &reduce_compute, &reduce_input, transformer);
      kps::Reduce<MPType, 1, 1, 1, ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &reduce_compute, reducer, false);
    }
    Ty result = static_cast<Ty>(reduce_var);
    kps::WriteData<Ty, 1, 1, 1, true>(y + store_offset + idx, &result,
                                      dim.rem_x);
722 723 724
  }
}

725
template <typename Tx, typename Ty, typename MPType, typename ReduceOp>
726
static void LaunchReduceKernel(const Tx* x_data, Ty* y_data,
727
                               const ReduceOp& reducer, MPType init,
728 729
                               gpuStream_t stream, ReduceConfig<Ty> config) {
  using TransformOp = typename ReduceOp::Transformer;
730 731 732 733 734

  if (config.reduce_type == kReduceLastDim) {
    int stride_reduce = 1;
    int stride_left = config.reduce_num;
    // for higher performance
735 736
    auto reduce_index_calculator = OneDimIndexCal(stride_reduce);
    auto left_index_calculator = OneDimIndexCal(stride_left);
737

738 739 740 741 742 743 744 745 746 747 748 749
    kps::DimConfig dim =
        kps::DimConfig(config.grid.x, config.grid.y, config.grid.z,
                       config.block.x, config.block.y, 0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU2
    ReduceAnyKernel<Tx, Ty, MPType, ReduceOp, TransformOp,
                    OneDimIndexCal><<<8, 128, stream>>>(
        x_data, config.output_data, reducer, TransformOp(config.reduce_num),
        init, config.reduce_num, config.left_num, config.reduce_last_dim,
        reduce_index_calculator, left_index_calculator, dim);
#else
750
    ReduceAnyKernel<Tx, Ty, MPType, ReduceOp, TransformOp,
751
                    OneDimIndexCal><<<config.grid, config.block, 0, stream>>>(
752 753
        x_data, config.output_data, reducer, TransformOp(config.reduce_num),
        init, config.reduce_num, config.left_num, config.reduce_last_dim,
754 755
        reduce_index_calculator, left_index_calculator, dim);
#endif
756 757 758 759 760 761 762 763 764

  } else {
    int reduce_rank = config.reduce_strides.size();
    int left_rank = config.left_strides.size();
    auto reduce_index_calculator =
        IndexCalculator(reduce_rank, config.reduce_dim, config.reduce_strides,
                        config.x_strides);
    auto left_index_calculator = IndexCalculator(
        left_rank, config.left_dim, config.left_strides, config.x_strides);
765 766 767 768 769 770 771 772 773 774 775 776 777

    kps::DimConfig dim =
        kps::DimConfig(config.grid.x, config.grid.y, config.grid.z,
                       config.block.x, config.block.y, 0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU2
    ReduceAnyKernel<Tx, Ty, MPType, ReduceOp, TransformOp,
                    IndexCalculator><<<8, 128, stream>>>(
        x_data, config.output_data, reducer, TransformOp(config.reduce_num),
        init, config.reduce_num, config.left_num, config.reduce_last_dim,
        reduce_index_calculator, left_index_calculator, dim);
#else
778 779 780 781
    ReduceAnyKernel<Tx, Ty, MPType, ReduceOp, TransformOp,
                    IndexCalculator><<<config.grid, config.block, 0, stream>>>(
        x_data, config.output_data, reducer, TransformOp(config.reduce_num),
        init, config.reduce_num, config.left_num, config.reduce_last_dim,
782 783
        reduce_index_calculator, left_index_calculator, dim);
#endif
784
  }
785 786

  if (config.should_reduce_again) {
787 788
    dim3 block;
    dim3 grid;
789
    if (config.reduce_last_dim) {
790
      block = dim3(32, 1, 1);
791
      grid = dim3(details::AlignUp(config.left_num, 32), 1, 1);
792 793 794 795
    } else {
      block = dim3(config.block.x, 1, 1);
      grid = dim3(config.grid.x, 1, config.grid.z);
    }
796

797 798 799 800 801 802 803 804 805 806 807 808
    auto last_index = OneDimIndexCal(1);
    auto first_index = OneDimIndexCal(config.left_num);
    kps::DimConfig dim =
        kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
    dim.SetRem(config.left_num % block.x, 0, 0);
#ifdef PADDLE_WITH_XPU2
    ReduceHigherDimKernel<Ty, Ty, MPType, ReduceOp,
                          kps::IdentityFunctor<Ty, MPType>><<<8, 128, stream>>>(
        config.output_data, y_data, reducer,
        kps::IdentityFunctor<Ty, MPType>(config.grid.y), init, config.grid.y,
        config.left_num, config.grid.y, dim);
#else
809
    ReduceHigherDimKernel<
810
        Ty, Ty, MPType, ReduceOp,
811
        kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
812
        config.output_data, y_data, reducer,
813 814 815
        kps::IdentityFunctor<Ty, MPType>(config.grid.y), init, config.grid.y,
        config.left_num, config.grid.y, dim);
#endif
816 817 818
  }
}

819 820 821 822 823
template <typename Tx, typename Ty,
          template <typename, typename> class ReduceOp>
void TensorReduceFunctorImpl(const framework::Tensor& x, framework::Tensor* y,
                             std::vector<int> origin_reduce_dims,
                             gpuStream_t stream) {
824 825
  auto x_dim = framework::vectorize<int>(x.dims());
  auto config = ReduceConfig<Ty>(origin_reduce_dims, x_dim);
826
  config.Run();
827
  int numel = x.numel();
828
  // after config.run()
829
  // SetOutputData for ReduceHigherDim when should_reduce_again is true,
830 831
  // temp_output should be stored temp_data in output_data space or stored in
  // y_data;
832
  framework::Tensor tmp;
833 834
  auto x_data = x.data<Tx>();
  auto y_data = y->mutable_data<Ty>(x.place());
835 836 837

  if (config.reduce_num == 1) {
    auto out_dims = y->dims();
838 839 840 841 842 843 844 845 846 847
    if (x.type() == y->type()) {
      framework::TensorCopy(x, y->place(), y);
      y->Resize(out_dims);
    } else {
      auto* dev_ctx = static_cast<platform::CUDADeviceContext*>(
          paddle::platform::DeviceContextPool::Instance().Get(x.place()));
      framework::VisitDataType(
          static_cast<framework::proto::VarType::Type>(y->type()),
          CastOpFunctor<platform::CUDADeviceContext, Tx>(&x, y, *dev_ctx));
    }
848 849
    return;
  }
850 851

  config.SetOutputData(y_data, x.place(), &tmp);
852
  bool use_cub_reduce = (config.reduce_num == numel) &&
853 854 855 856 857
                        (!std::is_same<Tx, paddle::platform::float16>::value);
  if (use_cub_reduce) {
    // launch CUB::Reduce
    using TransformOp = typename ReduceOp<Tx, Ty>::Transformer;
    auto reducer = ReduceOp<Tx, Ty>();
858 859 860 861 862 863 864 865 866 867 868 869 870
    cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(
        x_data, TransformOp(config.reduce_num));
    size_t temp_storage_bytes = 0;
    cub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, trans_x, y_data,
                              config.reduce_num, reducer, reducer.initial(),
                              stream);
    framework::Tensor tmp;
    auto* temp_storage = tmp.mutable_data<uint8_t>(
        framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
        x.place());
    cub::DeviceReduce::Reduce(temp_storage, temp_storage_bytes, trans_x, y_data,
                              config.reduce_num, reducer, reducer.initial(),
                              stream);
871

872 873 874
    return;
  }

875 876
  using MPType = typename details::MPTypeTrait<Ty>::Type;
  auto reducer = ReduceOp<Tx, MPType>();
877 878 879 880 881 882 883 884 885
  // launch ReduceHigherDimKernel
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  // eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1
  //     if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx /
  //     32
  //     else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
  if (config.reduce_type == ReduceType::kReduceHigherDim) {
    using TransformOp = typename ReduceOp<Tx, MPType>::Transformer;
886 887 888 889 890 891 892 893 894 895 896 897 898
    kps::DimConfig dim =
        kps::DimConfig(config.grid.x, config.grid.y, config.grid.z,
                       config.block.x, config.blocking_size, 0);
    dim.SetRem(config.left_num % config.block.x,
               config.reduce_num % config.blocking_size, 0);

#ifdef PADDLE_WITH_XPU2
    ReduceHigherDimKernel<Tx, Ty, MPType, ReduceOp<Tx, MPType>,
                          TransformOp><<<8, 128, stream>>>(
        x_data, config.output_data, reducer, TransformOp(config.reduce_num),
        reducer.initial(), config.reduce_num, config.left_num,
        config.blocking_size, dim);
#else
899 900 901 902 903
    ReduceHigherDimKernel<
        Tx, Ty, MPType, ReduceOp<Tx, MPType>,
        TransformOp><<<config.grid, config.block, 0, stream>>>(
        x_data, config.output_data, reducer, TransformOp(config.reduce_num),
        reducer.initial(), config.reduce_num, config.left_num,
904 905
        config.blocking_size, dim);
#endif
906 907 908 909

    if (config.should_reduce_again) {
      dim3 block = dim3(config.block.x, 1, 1);
      dim3 grid = dim3(config.grid.x, 1, config.grid.z);
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
      kps::DimConfig dim2 =
          kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
      dim2.SetRem(config.left_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU2
      ReduceHigherDimKernel<
          Ty, Ty, MPType, ReduceOp<Tx, MPType>,
          kps::IdentityFunctor<Ty, MPType>><<<8, 128, stream>>>(
          config.output_data, y_data, reducer,
          kps::IdentityFunctor<Ty, MPType>(config.grid.y), reducer.initial(),
          config.grid.y, config.left_num, config.grid.y, dim2);
#else
      ReduceHigherDimKernel<
          Ty, Ty, MPType, ReduceOp<Tx, MPType>,
          kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
925
          config.output_data, y_data, reducer,
926 927 928
          kps::IdentityFunctor<Ty, MPType>(config.grid.y), reducer.initial(),
          config.grid.y, config.left_num, config.grid.y, dim2);
#endif
929 930 931 932 933 934 935
    }
    return;
  }

  // when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
  // when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
  // function will be used
936
  LaunchReduceKernel<Tx, Ty, MPType, ReduceOp<Tx, MPType>>(
937
      x_data, y_data, reducer, reducer.initial(), stream, config);
938 939
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
template <typename Tx, template <typename, typename> class ReduceOp>
struct TensorReduceFunc {
  const framework::Tensor& x;
  framework::Tensor* y;
  std::vector<int> origin_reduce_dims;
  gpuStream_t stream;
  TensorReduceFunc(const framework::Tensor& x, framework::Tensor* y,
                   std::vector<int> origin_reduce_dims, gpuStream_t stream)
      : x(x), y(y), origin_reduce_dims(origin_reduce_dims), stream(stream) {}

  template <typename Ty>
  void apply() const {
    TensorReduceFunctorImpl<Tx, Ty, ReduceOp>(x, y, origin_reduce_dims, stream);
  }
};

956 957
}  // namespace operators
}  // namespace paddle