reduce_op.cu.h 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include "paddle/fluid/framework/array.h"
33
#include "paddle/fluid/framework/op_registry.h"
34 35
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
36
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
37
#include "paddle/fluid/operators/cast_op.h"
38
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
39
#include "paddle/fluid/platform/cuda_device_function.h"
40
#include "paddle/fluid/platform/fast_divmod.h"
41

42 43
// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
44
#define REDUCE_VEC_SIZE 4
45

46 47 48
namespace paddle {
namespace operators {

49
namespace kps = paddle::operators::kernel_primitives;
50

51
namespace details {
52 53 54 55 56 57 58 59 60 61

static inline int GetLastPow2(int n) {
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
  return std::max(1, n - (n >> 1));
}

62 63
static inline int64_t AlignUp(int64_t a, int64_t b) { return (a + b - 1) / b; }

64 65 66
// get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny
static inline std::vector<int> GetDimStrides(const std::vector<int>& dims,
                                             const std::vector<int>& idx) {
67 68 69 70 71 72 73 74 75 76
  int n = static_cast<int>(idx.size());
  if (n == 0) return std::vector<int>();
  std::vector<int> strides(n);
  strides.back() = 1;
  for (int i = n - 2; i >= 0; --i) {
    strides[i] = strides[i + 1] * dims[idx[i + 1]];
  }
  return strides;
}

77 78
// get blockDim for reduceLastDim and reduceAny
static inline int GetBlockDim(int block_dim) {
79 80 81
  return block_dim >= kps::details::kReduceMaxThread
             ? kps::details::kReduceMaxThread
             : GetLastPow2(block_dim);
82 83
}

84 85
// check reduce rand is valid
static inline void CheckReduceRank(int reduce_rank, int rank) {
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  if (rank % 2 == 0) {
    PADDLE_ENFORCE_EQ(reduce_rank, rank / 2,
                      platform::errors::InvalidArgument(
                          "ReduceOp: invalid reduce rank. When rank = %d, "
                          "reduce_rank must be %d, but got %d.",
                          rank, rank / 2, reduce_rank));
  } else {
    auto lower_rank = (rank - 1) / 2;
    auto upper_rank = (rank + 1) / 2;
    PADDLE_ENFORCE_EQ(
        reduce_rank == lower_rank || reduce_rank == upper_rank, true,
        platform::errors::InvalidArgument(
            "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
            "must be %d or %d, but got %d.",
            rank, lower_rank, upper_rank, reduce_rank));
  }
}

104
// convert dims from vector to array
105
template <typename T, size_t ElementCount, typename VectorLikeType>
106
static inline paddle::framework::Array<T, ElementCount> VectorToArray(
107
    const VectorLikeType& vec) {
108
  PADDLE_ENFORCE_LE(vec.size(), ElementCount,
109 110
                    platform::errors::InvalidArgument(
                        "Cub reduce Array: size not match. Received "
111
                        "vec.size() %d > ElementCount %d.",
112 113 114
                        vec.size(), ElementCount));
  size_t n = static_cast<size_t>(vec.size());
  paddle::framework::Array<T, ElementCount> ret;
115 116 117
  for (size_t i = 0; i < n; ++i) {
    ret[i] = vec[i];
  }
118 119 120
  return ret;
}

121
}  // namespace details
122

123
using Tensor = framework::Tensor;
124
constexpr int kMaxRank = framework::DDim::kMaxRank;
125

126
enum ReduceType {
127
  kReduceLastDim = 0x01,    // when reduce_dim[0] == x_dim.size() - 1;
128
  kReduceHigherDim = 0x02,  // ReduceFirstDim or reduceSecondDim
129
  kReduceAny = 0x03,        // when reduce_dim.size() > 1
130 131
};

132 133 134 135 136
struct IndexCalculator {
  IndexCalculator(int dim, const std::vector<int>& cal_dims,
                  const std::vector<int>& cal_strides,
                  const std::vector<int>& full_strides)
      : dim(dim) {
137 138
    dims = details::VectorToArray<int, kMaxRank>(cal_dims);
    strides = details::VectorToArray<int, kMaxRank>(full_strides);
139
    std::vector<platform::FastDivMod> cal_divmoders;
140 141
    // fast divmod
    for (auto i : cal_strides) {
142
      cal_divmoders.push_back(platform::FastDivMod(i));
143
    }
144
    divmoders =
145
        details::VectorToArray<platform::FastDivMod, kMaxRank>(cal_divmoders);
146 147
  }

148
  __device__ inline int operator()(int offset) const {
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    int index = 0;
#pragma unroll
    for (int i = 0; i < kMaxRank; ++i) {
      if (i == dim) {
        break;
      }
      auto divmod = divmoders[i].Divmod(offset);
      index += (divmod.val[0] * strides[dims[i]]);
      offset = divmod.val[1];
    }
    return index;
  }

  int dim;
  framework::Array<int, kMaxRank> dims;
  framework::Array<int, kMaxRank> strides;
165
  framework::Array<platform::FastDivMod, kMaxRank> divmoders;
166 167
};

168 169 170 171 172 173 174 175 176
// when reduce_type == kReduceLastDim this struct will be used
// for higher performance
struct LastDimIndexCal {
  explicit LastDimIndexCal(int num) : stride(num) {}

  __device__ inline int operator()(int index) const { return index * stride; }
  int stride;
};

177 178 179
// reduce config
template <typename Ty>
struct ReduceConfig {
180 181 182
  ReduceConfig(const std::vector<int>& origin_reduce_dims,
               const std::vector<int>& origin_x_dim)
      : reduce_dims_origin(origin_reduce_dims), x_dim(origin_x_dim) {}
183 184 185 186 187

  // get the parameters of reduceKernel
  void Run() {
    // step1: update the reduce_dim left_dim and x_dim
    SetReduceDim();
188

189 190
    // step2: get the strides of dim for reduceAny and reduceLastDim
    SetStrides();
191

192 193
    // step3: get the type of reduce
    SetReduceType();
194

195 196 197 198 199 200
    // step4: set the block and grid for launch kernel
    SetBlockDim();
  }

  // when should_reduce_again is true, we need malloc temp space for temp data
  void SetOutputData(Ty* y_data, const platform::Place& place,
201
                     framework::Tensor* tmp) {
202
    if (should_reduce_again) {
203
      output_data = tmp->mutable_data<Ty>(
204
          framework::make_ddim(
205
              {static_cast<int64_t>(left_num * grid.z * grid.y * sizeof(Ty))}),
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
          place);
    } else {
      output_data = y_data;
    }
  }

 private:
  // set reduce_dim, left_dim and update x_dim
  // eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1]
  //     --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1]
  void SetReduceDim() {
    std::set<int> reduce_set;
    for (auto e : reduce_dims_origin) {
      auto pos = e >= 0 ? e : e + x_dim.size();
      reduce_set.insert(pos);
    }
222

223 224
    std::vector<int> reduce_dim_temp(reduce_set.begin(), reduce_set.end());
    std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end());
225 226 227 228 229 230 231 232 233 234

    // update reduce_dim and x_dim
    std::vector<int> x_new_dim;

    reduce_dim.push_back(reduce_dim_temp[0]);
    x_new_dim.push_back(x_dim[0]);

    int idx_reduce = 1;
    int num = 0;

235
    if (reduce_dim_temp.size() > 1) {
236 237 238 239 240 241 242 243 244 245 246 247 248 249
      for (int i = 1; i < x_dim.size(); i++) {
        if ((idx_reduce < reduce_dim_temp.size()) &&
            (i == reduce_dim_temp[idx_reduce])) {
          int result =
              reduce_dim_temp[idx_reduce] - reduce_dim[reduce_dim.size() - 1];
          bool is_equal = ((result - num) == 1);
          if (is_equal) {
            x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
            num++;
          } else {
            reduce_dim.push_back(reduce_dim_temp[idx_reduce] - num);
            x_new_dim.push_back(x_dim[i]);
          }
          idx_reduce++;
250
        } else {
251
          x_new_dim.push_back(x_dim[i]);
252 253 254
        }
      }
    } else {
255
      x_new_dim = x_dim;
256 257
    }

258 259 260 261 262
    // update x_dim
    x_dim = x_new_dim;
    std::vector<int>().swap(x_new_dim);

    std::vector<int> reduce_dim_new;
263 264 265 266 267
    int is_reduced = 0;
    for (auto e : reduce_dim) {
      is_reduced |= 1 << e;
    }

268 269
    std::vector<int>().swap(reduce_dim);

270 271
    for (int i = 0; i < x_dim.size(); i++) {
      if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
272
        x_new_dim.push_back(x_dim[i]);
273
        if ((is_reduced >> i) & 1)
274
          reduce_dim_new.push_back(x_new_dim.size() - 1);
275
      } else {
276
        x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
277 278 279
      }
    }

280 281
    x_dim = x_new_dim;
    reduce_dim = reduce_dim_new;
282 283 284 285 286 287 288 289 290 291 292 293 294

    int x_rank = static_cast<int>(x_dim.size());
    std::set<int> left_set;

    for (int i = 0; i < x_rank; ++i) {
      left_set.insert(i);
    }

    for (auto e : reduce_dim) {
      left_set.erase(e);
    }

    left_dim.assign(left_set.begin(), left_set.end());
295 296

    // if the last dim gets involved in reduction
297
    reduce_last_dim = (reduce_dim.back() == x_dim.size() - 1);
298 299 300 301 302 303 304 305 306 307 308 309
  }

  // set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny
  // eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1]
  //     --SetStrides--> x_strides= [6,1], reduce_strides = [1],
  //     left_strides = [1]
  void SetStrides() {
    std::vector<int> idx_dim;
    for (int i = 0; i < x_dim.size(); i++) {
      idx_dim.push_back(i);
    }

310 311 312
    x_strides = details::GetDimStrides(x_dim, idx_dim);
    reduce_strides = details::GetDimStrides(x_dim, reduce_dim);
    left_strides = details::GetDimStrides(x_dim, left_dim);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];

    left_num = 1;
    if (left_dim.size()) {
      left_num = left_strides[0] * x_dim[left_dim[0]];
    }
  }

  // get the reduceType
  // eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim
  //     x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim
  //     x_dim = [8] reduce_dim = [0] --> reduceAll
  //     x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny
  void SetReduceType() {
    int rank = x_dim.size();
    int reduce_rank = reduce_dim.size();
329 330 331
    bool is_last_dim =
        (rank == 2) && (reduce_rank == 1) && (reduce_dim[0] == 1);
    if (rank == reduce_rank || is_last_dim) {
332
      reduce_type = static_cast<int>(ReduceType::kReduceLastDim);
333
    } else if (reduce_rank == 1) {
334 335 336 337 338 339 340
      // ReduceFirstDim and reduceSecondDim
      reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
    } else {
      reduce_type = static_cast<int>(ReduceType::kReduceAny);
    }
  }

341 342 343
  void SetBlockDimForReduceAny(dim3* block_dim, dim3* grid_dim) {
    constexpr int min_reduce_num_per_thread = 16;
    constexpr int max_reduce_num_per_thread = 256;
344
    constexpr int max_num_threads = kps::details::kReduceMaxThread;
345 346

    // set block size.
347
    // 1. If reduce_last_dim == true, all the threads whose threadIdx.y are same
348 349
    //    will process the reduction for one output.
    //    The number of output for one block is blockDim.y;
350
    // 2. If reduce_last_dim == false, different threadIdx.x will process
351 352 353 354
    //    different reduction and gets the output separately. If it is
    //    necessary, it should reduce in block y.
    //    The number of output for one block is blockDim.x;
    int block_x, block_y;
355
    int grid_num, reduce_num_per_thread;
356 357 358
    if (reduce_last_dim) {
      block_x = details::GetBlockDim(reduce_num);
      block_y = details::GetBlockDim(left_num);
359 360 361
      block_dim->x = block_x;
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
362 363
      grid_num = details::AlignUp(left_num, block_dim->y);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->x);
364
    } else {
365 366
      block_x = details::GetBlockDim(left_num);
      block_y = details::GetBlockDim(reduce_num);
367 368 369 370 371
      block_dim->x = std::min(block_x, 32);
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      block_dim->x =
          std::min(block_x, static_cast<int>(max_num_threads / block_dim->y));
372 373
      grid_num = details::AlignUp(left_num, block_dim->x);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->y);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    }
    int device_id = platform::GetCurrentDeviceId();
    int max_mp = platform::GetCUDAMultiProcessors(device_id);
    int max_threads_per_mp =
        platform::GetCUDAMaxThreadsPerMultiProcessor(device_id);
    int max_threads = max_threads_per_mp * max_mp;
    int num_threads = block_dim->x * block_dim->y;
    int max_num_blocks = max_threads / num_threads;

    // set grid size.
    // Whether to set grid.y larger than 1, there are 3 following rules:
    // 1. The number that each thread process should no less than
    //    min_reduce_num_per_threadbut no more than max_reduce_num_per_thread;
    // 2. It should maximize the utilization of SM.
    // So we choose the minimum between input_split_num_1 and input_split_num_3
    // to make each thread process as mush data as possible. Meanwhile,
    // the number cannot be larger than max_reduce_num_per_thread, so we
    // choose the maximum between the result above and input_split_num_2.
    int input_split_num_1 =
393
        details::AlignUp(reduce_num_per_thread, min_reduce_num_per_thread);
394
    int input_split_num_2 =
395 396
        details::AlignUp(reduce_num_per_thread, max_reduce_num_per_thread);
    int input_split_num_3 = details::AlignUp(max_num_blocks, grid_num);
397 398 399 400 401 402 403 404 405 406

    grid_dim->x = grid_num;
    grid_dim->y = std::max(std::min(input_split_num_1, input_split_num_3),
                           input_split_num_2);
    // if grid.y > 1, we need launch reduce kernel again.
    if (grid_dim->y > 1) {
      should_reduce_again = true;
    }
  }

407 408 409 410 411 412
  // set block and grid for launch kernel
  // for ReduceHigherDim: if block is enough -> splite reduce_num
  //                     else init block(32, 1) grid(block_num, 1)
  // for others: block(block_num, 1) , grid(left_num, 1)
  void SetBlockDim() {
    // init
413
    int block_num = details::GetBlockDim(reduce_num);
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    should_reduce_again = false;

    dim3 block_dim(block_num, 1);
    dim3 grid_dim(left_num, 1);
    blocking_size = reduce_num;

    if (reduce_type == ReduceType::kReduceHigherDim) {
      int last_dim_num = x_dim.back();
      // update left_num
      int grid_z = left_num / last_dim_num;
      left_num = last_dim_num;

      block_dim.z = 1;
      grid_dim.z = grid_z;

      int device_id = platform::GetCurrentDeviceId();
      int max_mp = platform::GetCUDAMultiProcessors(device_id);
      int max_threads_per_mp =
          platform::GetCUDAMaxThreadsPerMultiProcessor(device_id);
      int max_threads = max_threads_per_mp * max_mp;

      // init
      int num_block = (max_threads / left_num);

438
      if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
439
        blocking_size = details::GetLastPow2(reduce_num / num_block);
440 441

        if (blocking_size <= 1) {
442
          blocking_size = details::GetLastPow2(sqrt(reduce_num));
443 444 445 446 447 448
        } else if (blocking_size * 2 < reduce_num) {
          blocking_size *= 2;
        }

        should_reduce_again = true;

449
        block_dim.x = details::GetBlockDim(left_num);
450 451 452 453 454
        block_dim.y = 1;
        grid_dim.x = (left_num + block_dim.x - 1) / block_dim.x;
        grid_dim.y = (reduce_num + blocking_size - 1) / blocking_size;

      } else {
455
        block_dim.x = details::GetBlockDim(left_num);
456 457 458 459 460
        block_dim.y = 1;
        blocking_size = reduce_num;
        grid_dim.x = (left_num + block_dim.x - 1) / block_dim.x;
        grid_dim.y = 1;
      }
461
    } else {
462
      SetBlockDimForReduceAny(&block_dim, &grid_dim);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    }

    block = block_dim;
    grid = grid_dim;
  }

 public:
  std::vector<int> reduce_dims_origin;
  std::vector<int> reduce_dim;
  std::vector<int> x_dim;
  std::vector<int> left_dim;
  std::vector<int> x_strides;
  std::vector<int> left_strides;
  std::vector<int> reduce_strides;

  int reduce_type;
  int reduce_num;
  int left_num;
  int blocking_size;
  bool should_reduce_again;
483
  bool reduce_last_dim;
484 485 486 487 488 489

  Ty* output_data;

  dim3 block;
  dim3 grid;
};
490 491 492
/* size : how many colonms left have to be reduced
 * loop : how many rows data have to be reduced
 * block_size: max rows this block to reduce
493
 */
494
template <typename Tx, typename Ty, typename MPType, typename ReduceOp,
495 496 497 498 499 500 501
          typename TransformOp, bool IsBoundary = false>
__device__ void HigherDimDealSegment(const Tx* x, Ty* y, ReduceOp reducer,
                                     TransformOp transformer, MPType init,
                                     int reduce_num, int left_num,
                                     int block_size) {
  const int NY = 1;
  int idx = blockIdx.x * blockDim.x;
502
  int idy = blockIdx.y * block_size;
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
  // block_offset of rows
  Tx reduce_input[NY];
  MPType reduce_compute[NY];
  MPType result = init;
  // the offset of this block
  int block_offset = idy * left_num + idx + blockIdx.z * reduce_num * left_num;
  const Tx* input = x + block_offset;
  int store_offset =
      blockIdx.y * left_num + blockIdx.z * gridDim.y * left_num + idx;
  // how many columns left
  int size = left_num - idx;
  // how many rows have to be reduced
  int loop = reduce_num - idy;
  loop = loop > block_size ? block_size : loop;

  for (int loop_index = 0; loop_index < loop; loop_index += NY) {
    kps::ReadData<Tx, Tx, 1, NY, 1, IsBoundary>(
        &reduce_input[0], input + loop_index * left_num, size, NY, 1, left_num);
    kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
        &reduce_compute[0], &reduce_input[0], transformer);
    kps::Reduce<MPType, NY, 1, 1, ReduceOp,
                kps::details::ReduceMode::kLocalMode>(
        &result, &reduce_compute[0], reducer, false);
526
  }
527 528 529

  Ty temp_data = static_cast<Ty>(result);
  kps::WriteData<Ty, 1, 1, 1, IsBoundary>(y + store_offset, &temp_data, size);
530 531
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
template <typename Tx, typename MPType, typename ReduceOp, typename TransformOp,
          typename Calculator, bool IsBoundary>
__device__ void ReduceAnyKernelImpl(const Tx* input, MPType* reduce_var,
                                    ReduceOp reducer, TransformOp transformer,
                                    MPType init, int reduce_num, int input_idx,
                                    bool reduce_last_dim,
                                    const Calculator& reduce_index_calculator,
                                    int stride, int num) {
  Tx input_reg[REDUCE_VEC_SIZE];
  MPType input_compute[REDUCE_VEC_SIZE];
  MPType input_transform[REDUCE_VEC_SIZE];

  kps::Init<MPType, REDUCE_VEC_SIZE>(&input_compute[0], init);
  kps::ReadDataReduce<Tx, 1, REDUCE_VEC_SIZE, 1, 1, Calculator, IsBoundary>(
      &input_reg[0], input, input_idx, reduce_index_calculator, 1, reduce_num,
      1, stride, reduce_last_dim);
  kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
      &input_transform[0], &input_reg[0], transformer);
  kps::Init<MPType, REDUCE_VEC_SIZE, IsBoundary>(input_compute, input_transform,
                                                 num);
  kps::Reduce<MPType, REDUCE_VEC_SIZE, 1, 1, ReduceOp,
              kps::details::ReduceMode::kLocalMode>(
      reduce_var, &input_compute[0], reducer, reduce_last_dim);
}

557
// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
558 559
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
560
template <typename Tx, typename Ty, typename MPType, typename ReduceOp,
561 562 563 564 565 566 567
          typename TransformOp, typename Calculator>
__global__ void ReduceAnyKernel(const Tx* x, Ty* y, ReduceOp reducer,
                                TransformOp transformer, MPType init,
                                int reduce_num, int left_num,
                                bool reduce_last_dim,
                                const Calculator reduce_index_calculator,
                                const Calculator left_index_calculator) {
568
  int input_idx, left_idx, stride;
569 570 571
  int block_size = 0;
  bool need_store = true;
  int tid = 0;
572
  // the last dim gets involved in reduction
573 574
  if (reduce_last_dim) {
    input_idx = blockIdx.y * blockDim.x;
575
    left_idx = blockIdx.x * blockDim.y + threadIdx.y;
576
    stride = gridDim.y * blockDim.x;
577 578 579
    block_size = blockDim.x;
    need_store = (threadIdx.x == 0) && (left_idx < left_num);
    tid = threadIdx.x;
580
  } else {
581
    input_idx = blockIdx.y * blockDim.y;
582 583
    left_idx = blockIdx.x * blockDim.x + threadIdx.x;
    stride = gridDim.y * blockDim.y;
584 585 586
    block_size = blockDim.y;
    need_store = (threadIdx.y == 0) && (left_idx < left_num);
    tid = threadIdx.y;
587
  }
588
  int store_offset = blockIdx.y * left_num + left_idx;
589
  // calculate the offset, means the addr where each thread really start.
590
  int input_offset = left_index_calculator(left_idx);
591
  const Tx* input = x + input_offset;
592
  MPType reduce_var = init;
593
  Ty store_data;
594

595 596 597 598
  // 1. reduce for each thread
  if (left_idx < left_num) {
    // load REDUCE_VEC_SIZE data once, and then compute
    int bound = reduce_num - (REDUCE_VEC_SIZE - 1) * stride;
599 600
    for (; input_idx + block_size < bound;
         input_idx += REDUCE_VEC_SIZE * stride) {
601 602 603
      ReduceAnyKernelImpl<Tx, MPType, ReduceOp, TransformOp, Calculator, false>(
          input, &reduce_var, reducer, transformer, init, reduce_num, input_idx,
          reduce_last_dim, reduce_index_calculator, stride, reduce_num);
604
    }
605 606 607 608
    int num = (reduce_num - input_idx - tid + stride - 1) / stride;
    ReduceAnyKernelImpl<Tx, MPType, ReduceOp, TransformOp, Calculator, true>(
        input, &reduce_var, reducer, transformer, init, reduce_num - input_idx,
        input_idx, reduce_last_dim, reduce_index_calculator, stride, num);
609
  }
610

611 612 613 614
  kps::Reduce<MPType, 1, 1, 1, ReduceOp, kps::details::kGlobalMode>(
      &reduce_var, &reduce_var, reducer, reduce_last_dim);
  if (need_store) {
    y[store_offset] = static_cast<Ty>(reduce_var);
615 616 617
  }
}

618 619
template <typename Tx, typename Ty, typename MPType, typename ReduceOp,
          typename TransformOp>
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
__global__ void ReduceHigherDimKernel(const Tx* x, Ty* y, ReduceOp reducer,
                                      TransformOp transformer, MPType init,
                                      int reduce_num, int left_num,
                                      int blocking_size) {
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  // eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1
  //     if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx /
  //     32
  //     else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
  int idx = blockIdx.x * blockDim.x;
  int size = left_num - idx;
  if (size >= blockDim.x) {  // complete segment
    HigherDimDealSegment<Tx, Ty, MPType, ReduceOp, TransformOp>(
        x, y, reducer, transformer, init, reduce_num, left_num, blocking_size);
  } else {
    HigherDimDealSegment<Tx, Ty, MPType, ReduceOp, TransformOp, true>(
637 638 639 640
        x, y, reducer, transformer, init, reduce_num, left_num, blocking_size);
  }
}

641
template <typename Tx, typename Ty, typename MPType, typename ReduceOp>
642
static void LaunchReduceKernel(const Tx* x_data, Ty* y_data,
643
                               const ReduceOp& reducer, MPType init,
644 645
                               gpuStream_t stream, ReduceConfig<Ty> config) {
  using TransformOp = typename ReduceOp::Transformer;
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

  if (config.reduce_type == kReduceLastDim) {
    int stride_reduce = 1;
    int stride_left = config.reduce_num;
    // for higher performance
    auto reduce_index_calculator = LastDimIndexCal(stride_reduce);
    auto left_index_calculator = LastDimIndexCal(stride_left);

    ReduceAnyKernel<Tx, Ty, MPType, ReduceOp, TransformOp,
                    LastDimIndexCal><<<config.grid, config.block, 0, stream>>>(
        x_data, config.output_data, reducer, TransformOp(config.reduce_num),
        init, config.reduce_num, config.left_num, config.reduce_last_dim,
        reduce_index_calculator, left_index_calculator);

  } else {
    int reduce_rank = config.reduce_strides.size();
    int left_rank = config.left_strides.size();
    auto reduce_index_calculator =
        IndexCalculator(reduce_rank, config.reduce_dim, config.reduce_strides,
                        config.x_strides);
    auto left_index_calculator = IndexCalculator(
        left_rank, config.left_dim, config.left_strides, config.x_strides);
    ReduceAnyKernel<Tx, Ty, MPType, ReduceOp, TransformOp,
                    IndexCalculator><<<config.grid, config.block, 0, stream>>>(
        x_data, config.output_data, reducer, TransformOp(config.reduce_num),
        init, config.reduce_num, config.left_num, config.reduce_last_dim,
        reduce_index_calculator, left_index_calculator);
  }
674 675

  if (config.should_reduce_again) {
676 677
    dim3 block;
    dim3 grid;
678
    if (config.reduce_last_dim) {
679
      block = dim3(32, 1, 1);
680
      grid = dim3(details::AlignUp(config.left_num, 32), 1, 1);
681 682 683 684
    } else {
      block = dim3(config.block.x, 1, 1);
      grid = dim3(config.grid.x, 1, config.grid.z);
    }
685

686
    ReduceHigherDimKernel<
687
        Ty, Ty, MPType, ReduceOp,
688
        kps::details::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
689
        config.output_data, y_data, reducer,
690 691
        kps::details::IdentityFunctor<Ty, MPType>(config.grid.y), init,
        config.grid.y, config.left_num, config.grid.y);
692 693 694
  }
}

695 696 697 698 699
template <typename Tx, typename Ty,
          template <typename, typename> class ReduceOp>
void TensorReduceFunctorImpl(const framework::Tensor& x, framework::Tensor* y,
                             std::vector<int> origin_reduce_dims,
                             gpuStream_t stream) {
700 701
  auto x_dim = framework::vectorize<int>(x.dims());
  auto config = ReduceConfig<Ty>(origin_reduce_dims, x_dim);
702
  config.Run();  // get the parameters of LaunchReduceKernel
703
  int numel = x.numel();
704
  // after config.run()
705
  // SetOutputData for ReduceHigherDim when should_reduce_again is true,
706 707
  // temp_output should be stored temp_data in output_data space or stored in
  // y_data;
708
  framework::Tensor tmp;
709 710
  auto x_data = x.data<Tx>();
  auto y_data = y->mutable_data<Ty>(x.place());
711 712 713

  if (config.reduce_num == 1) {
    auto out_dims = y->dims();
714 715 716 717 718 719 720 721 722 723
    if (x.type() == y->type()) {
      framework::TensorCopy(x, y->place(), y);
      y->Resize(out_dims);
    } else {
      auto* dev_ctx = static_cast<platform::CUDADeviceContext*>(
          paddle::platform::DeviceContextPool::Instance().Get(x.place()));
      framework::VisitDataType(
          static_cast<framework::proto::VarType::Type>(y->type()),
          CastOpFunctor<platform::CUDADeviceContext, Tx>(&x, y, *dev_ctx));
    }
724 725
    return;
  }
726 727

  config.SetOutputData(y_data, x.place(), &tmp);
728
  bool use_cub_reduce = (config.reduce_num == numel) &&
729 730 731 732 733
                        (!std::is_same<Tx, paddle::platform::float16>::value);
  if (use_cub_reduce) {
    // launch CUB::Reduce
    using TransformOp = typename ReduceOp<Tx, Ty>::Transformer;
    auto reducer = ReduceOp<Tx, Ty>();
734 735 736 737 738 739 740 741 742 743 744 745 746
    cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(
        x_data, TransformOp(config.reduce_num));
    size_t temp_storage_bytes = 0;
    cub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, trans_x, y_data,
                              config.reduce_num, reducer, reducer.initial(),
                              stream);
    framework::Tensor tmp;
    auto* temp_storage = tmp.mutable_data<uint8_t>(
        framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
        x.place());
    cub::DeviceReduce::Reduce(temp_storage, temp_storage_bytes, trans_x, y_data,
                              config.reduce_num, reducer, reducer.initial(),
                              stream);
747

748 749 750
    return;
  }

751 752
  using MPType = typename details::MPTypeTrait<Ty>::Type;
  auto reducer = ReduceOp<Tx, MPType>();
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
  // launch ReduceHigherDimKernel
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  // eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1
  //     if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx /
  //     32
  //     else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
  if (config.reduce_type == ReduceType::kReduceHigherDim) {
    using TransformOp = typename ReduceOp<Tx, MPType>::Transformer;

    ReduceHigherDimKernel<
        Tx, Ty, MPType, ReduceOp<Tx, MPType>,
        TransformOp><<<config.grid, config.block, 0, stream>>>(
        x_data, config.output_data, reducer, TransformOp(config.reduce_num),
        reducer.initial(), config.reduce_num, config.left_num,
        config.blocking_size);

    if (config.should_reduce_again) {
      dim3 block = dim3(config.block.x, 1, 1);
      dim3 grid = dim3(config.grid.x, 1, config.grid.z);
      ReduceHigherDimKernel<Ty, Ty, MPType, ReduceOp<Tx, MPType>,
                            kps::details::IdentityFunctor<
                                Ty, MPType>><<<grid, block, 0, stream>>>(
          config.output_data, y_data, reducer,
          kps::details::IdentityFunctor<Ty, MPType>(config.grid.y),
          reducer.initial(), config.grid.y, config.left_num, config.grid.y);
    }
    return;
  }

  // when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
  // when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
  // function will be used
786
  LaunchReduceKernel<Tx, Ty, MPType, ReduceOp<Tx, MPType>>(
787
      x_data, y_data, reducer, reducer.initial(), stream, config);
788 789
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
template <typename Tx, template <typename, typename> class ReduceOp>
struct TensorReduceFunc {
  const framework::Tensor& x;
  framework::Tensor* y;
  std::vector<int> origin_reduce_dims;
  gpuStream_t stream;
  TensorReduceFunc(const framework::Tensor& x, framework::Tensor* y,
                   std::vector<int> origin_reduce_dims, gpuStream_t stream)
      : x(x), y(y), origin_reduce_dims(origin_reduce_dims), stream(stream) {}

  template <typename Ty>
  void apply() const {
    TensorReduceFunctorImpl<Tx, Ty, ReduceOp>(x, y, origin_reduce_dims, stream);
  }
};

806 807
}  // namespace operators
}  // namespace paddle