sparse_utils_kernel.cc 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
16

17 18 19
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
20
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
21

22
namespace phi {
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
namespace sparse {

template <typename T>
inline bool IsZero(const T* data, const size_t n) {
  const T zero = static_cast<T>(0);
  for (size_t i = 0; i < n; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

// TODO(zhangkaihuo): implement a kernel to count the number of non-zero
// elements in tensor
template <typename T>
inline int64_t GetNonZeroNum(const DenseTensor& dense,
                             const int64_t sparse_dim) {
  const auto& dims = dense.dims();
  PADDLE_ENFORCE_GE(
      dims.size(),
      sparse_dim,
45
      phi::errors::InvalidArgument(
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
          "sparse_dim(%d) should be less than or equal to dense.dim(%d)",
          sparse_dim,
          dims.size()));

  auto dims_2d = flatten_to_2d(dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  const T* data = dense.data<T>();
  int64_t non_zero_num = 0;
  for (int64_t i = 0; i < rows; i++) {
    if (!IsZero(data + i * cols, cols)) {
      non_zero_num = non_zero_num + 1;
    }
  }
  return non_zero_num;
}

template <typename T, typename Context>
void DenseToSparseCooKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const int64_t sparse_dim,
                            SparseCooTensor* out) {
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();

  int64_t non_zero_num = GetNonZeroNum<T>(x, sparse_dim);

  const auto place = dev_ctx.GetPlace();
75 76
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
77 78 79 80
  DenseTensorMeta indices_meta(DataType::INT64,
                               {sparse_dim, static_cast<int64_t>(non_zero_num)},
                               DataLayout::NCHW);
  DenseTensorMeta values_meta(x.meta().dtype, values_dims, x.meta().layout);
81 82
  phi::DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta));
  phi::DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  int64_t* indices_data = indices.mutable_data<int64_t>(place);
  T* values_data = values.mutable_data<T>(place);

  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  int index = 0;
  for (int i = 0; i < rows; i++) {
    if (!IsZero(x_data + i * cols, cols)) {
      int64_t sparse_index = i;
      for (int64_t j = sparse_dim - 1; j >= 0; j--) {
        indices_data[j * non_zero_num + index] = sparse_index % x_dims[j];
        sparse_index /= x_dims[j];
      }
      memcpy(values_data + index * cols, x_data + i * cols, cols * sizeof(T));
      ++index;
    }
  }
  out->SetMember(indices, values, x_dims, true);
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
template <typename T, typename Context>
void SparseCsrToCooKernel(const Context& dev_ctx,
                          const SparseCsrTensor& x,
                          SparseCooTensor* out) {
  const DDim& x_dims = x.dims();
  const int64_t non_zero_num = x.non_zero_cols().numel();
  const auto& csr_crows = x.non_zero_crows();
  const auto& csr_cols = x.non_zero_cols();
  const auto& csr_values = x.non_zero_elements();
  const int64_t* csr_crows_data = csr_crows.data<int64_t>();
  const int64_t* csr_cols_data = csr_cols.data<int64_t>();
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
  const auto place = dev_ctx.GetPlace();
  DenseTensorMeta indices_meta(
      DataType::INT64, {sparse_dim, non_zero_num}, DataLayout::NCHW);
125 126
  DenseTensorMeta values_meta(
      x.dtype(), {non_zero_num}, x.non_zero_elements().layout());
127 128
  phi::DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta));
  phi::DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  int64_t* coo_indices = indices.mutable_data<int64_t>(place);
  int64_t* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  int64_t* coo_rows_data =
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
  int64_t* coo_cols_data = coo_rows_data + non_zero_num;
  T* coo_values_data = values.mutable_data<T>(place);

  int batch = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

  int index = 0;
  for (int b = 0; b < batch; b++) {
    for (int i = 0; i < rows; i++) {
      for (int j = csr_crows_data[b * (rows + 1) + i];
           j < csr_crows_data[b * (rows + 1) + i + 1];
           j++) {
        coo_rows_data[index] = i;
        if (batch_ptr) {
          batch_ptr[index] = b;
        }
        ++index;
      }
    }
  }

  memcpy(coo_cols_data, csr_cols_data, sizeof(int64_t) * non_zero_num);
  memcpy(coo_values_data, csr_values_data, sizeof(T) * non_zero_num);
  out->SetMember(indices, values, x_dims, true);
}

159 160 161 162 163 164 165 166
template <typename T, typename Context>
void SparseCooToCsrKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          SparseCsrTensor* out) {
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
167
                    phi::errors::InvalidArgument(
168 169 170 171 172 173 174
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

Z
zyfncg 已提交
175 176 177 178 179 180 181 182 183 184 185
  phi::DenseTensor non_zero_crows;
  non_zero_crows.Resize({batchs * (rows + 1)});
  int64_t* csr_crows_data = dev_ctx.template Alloc<int64_t>(&non_zero_crows);

  phi::DenseTensor non_zero_cols;
  non_zero_cols.Resize({non_zero_num});
  int64_t* csr_cols_data = dev_ctx.template Alloc<int64_t>(&non_zero_cols);

  phi::DenseTensor non_zero_elements;
  non_zero_elements.Resize({non_zero_num});
  T* csr_values_data = dev_ctx.template Alloc<T>(&non_zero_elements);
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

  const auto& coo_indices = x.non_zero_indices();
  const auto& coo_values = x.non_zero_elements();
  const int64_t* batchs_ptr = coo_indices.data<int64_t>();
  const int64_t* coo_rows_data =
      batchs == 1 ? batchs_ptr : batchs_ptr + non_zero_num;
  const int64_t* coo_cols_data = coo_rows_data + non_zero_num;
  const T* coo_values_data = coo_values.data<T>();

  if (!x.coalesced()) {
    // TODO(zhangkahuo): call coalesced() to distinct and sort the indices
  }

  std::vector<int64_t> offsets(batchs, 0);
  if (batchs > 1) {
    for (int i = 0; i < non_zero_num; i++) {
      if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
        offsets[batchs_ptr[i]] = i + 1;
      }
    }
  } else {
    offsets[0] = non_zero_num;
  }

  for (int b = 0; b < batchs; b++) {
    if (offsets[b] == 0) continue;
    int batch_start = 0;
    int batch_non_zero_num = offsets[b];
    if (b > 0) {
      batch_start = offsets[b - 1];
      batch_non_zero_num -= batch_start;
    }
    auto* coo_rows_ptr = coo_rows_data + batch_start;
    for (int i = 0; i <= coo_rows_ptr[0]; i++) {
      csr_crows_data[b * (rows + 1) + i] = 0;
    }
    for (int64_t i = 1; i < batch_non_zero_num; i++) {
      for (int j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
    for (int64_t i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1;
         i++) {
      csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
    }
  }

  memcpy(csr_cols_data, coo_cols_data, sizeof(int64_t) * non_zero_num);
  memcpy(csr_values_data, coo_values_data, sizeof(T) * non_zero_num);
  out->SetMember(non_zero_crows, non_zero_cols, non_zero_elements, x_dims);
}

Z
zhangkaihuo 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250
template <typename T, typename Context>
void SparseCooToDenseKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            DenseTensor* out) {
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
  const auto indices = x.non_zero_indices();
  const auto values = x.non_zero_elements();
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
Z
zhangkaihuo 已提交
251
  const int64_t dense_dim = x.dense_dim();
Z
zhangkaihuo 已提交
252 253

  const T* x_data = values.data<T>();
Z
zhangkaihuo 已提交
254 255 256 257
  *out = phi::Empty(
      dev_ctx,
      DenseTensorMeta(x.dtype(), x.dims(), x.non_zero_elements().layout()));
  T* out_data = out->data<T>();
Z
zhangkaihuo 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

  memset(out_data, 0, sizeof(T) * out->numel());
  for (auto i = 0; i < non_zero_num; i++) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
      index +=
          indices.data<int64_t>()[j * non_zero_num + i] * sparse_offsets[j];
    }

    for (int j = 0; j < base_offset; j++) {
      out_data[index * base_offset + j] = x_data[i * base_offset + j];
    }
  }
}

283
}  // namespace sparse
284
}  // namespace phi
285

286
PD_REGISTER_KERNEL(dense_to_sparse_coo,
287 288
                   CPU,
                   ALL_LAYOUT,
289
                   phi::sparse::DenseToSparseCooKernel,
290 291 292 293 294 295 296 297
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
298

299
PD_REGISTER_KERNEL(sparse_csr_to_coo,
300 301
                   CPU,
                   ALL_LAYOUT,
302
                   phi::sparse::SparseCsrToCooKernel,
303 304 305 306 307 308 309 310
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
311

312
PD_REGISTER_KERNEL(sparse_coo_to_csr,
313 314
                   CPU,
                   ALL_LAYOUT,
315
                   phi::sparse::SparseCooToCsrKernel,
316 317
                   float,
                   double,
318
                   phi::dtype::float16,
319 320 321 322 323 324
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

325
PD_REGISTER_KERNEL(dense_to_sparse_csr,
326 327
                   CPU,
                   ALL_LAYOUT,
328
                   phi::sparse::DenseToSparseCsrKernel,
329 330
                   float,
                   double,
331
                   phi::dtype::float16,
332 333 334 335 336
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
337

338
PD_REGISTER_KERNEL(sparse_coo_to_dense,
Z
zhangkaihuo 已提交
339 340
                   CPU,
                   ALL_LAYOUT,
341
                   phi::sparse::SparseCooToDenseKernel,
Z
zhangkaihuo 已提交
342 343
                   float,
                   double,
344
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
345 346 347 348 349 350
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

351
PD_REGISTER_KERNEL(sparse_csr_to_dense,
Z
zhangkaihuo 已提交
352 353
                   CPU,
                   ALL_LAYOUT,
354
                   phi::sparse::SparseCsrToDenseKernel,
Z
zhangkaihuo 已提交
355 356
                   float,
                   double,
357
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
358 359 360 361 362
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

PD_REGISTER_KERNEL(coo_values,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::CooValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(csr_values,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::CsrValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
393 394 395 396 397 398 399 400 401 402 403 404

PD_REGISTER_KERNEL(sparse_coo_tensor,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooTensorKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {}