test_sparse_utils_op.py 20.1 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
18
import paddle.fluid as fluid
19
import paddle.fluid.core as core
20 21
from paddle.fluid.framework import _test_eager_guard

22 23
devices = ['cpu', 'gpu']

24

25
class TestSparseCreate(unittest.TestCase):
26

27
    def test_create_coo_by_tensor(self):
28
        with _test_eager_guard():
29 30
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1, 2, 3, 4, 5]
31
            dense_shape = [3, 4]
32 33
            dense_indices = paddle.to_tensor(indices)
            dense_elements = paddle.to_tensor(values, dtype='float32')
34 35 36 37
            coo = paddle.incubate.sparse.sparse_coo_tensor(dense_indices,
                                                           dense_elements,
                                                           dense_shape,
                                                           stop_gradient=False)
38
            # test the to_string.py
39 40
            assert np.array_equal(indices, coo.indices().numpy())
            assert np.array_equal(values, coo.values().numpy())
41

42 43 44 45
    def test_create_coo_by_np(self):
        with _test_eager_guard():
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1.0, 2.0, 3.0]
46
            dense_shape = [3, 3]
47 48
            coo = paddle.incubate.sparse.sparse_coo_tensor(
                indices, values, dense_shape)
49
            assert np.array_equal(3, coo.nnz())
50 51
            assert np.array_equal(indices, coo.indices().numpy())
            assert np.array_equal(values, coo.values().numpy())
52

53
    def test_create_csr_by_tensor(self):
54
        with _test_eager_guard():
55 56 57
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
58
            dense_shape = [3, 4]
59 60 61
            dense_crows = paddle.to_tensor(crows)
            dense_cols = paddle.to_tensor(cols)
            dense_elements = paddle.to_tensor(values, dtype='float32')
62
            stop_gradient = False
63
            csr = paddle.incubate.sparse.sparse_csr_tensor(
64 65 66 67 68
                dense_crows,
                dense_cols,
                dense_elements,
                dense_shape,
                stop_gradient=stop_gradient)
69

70 71 72 73 74 75
    def test_create_csr_by_np(self):
        with _test_eager_guard():
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
76 77
            csr = paddle.incubate.sparse.sparse_csr_tensor(
                crows, cols, values, dense_shape)
78
            # test the to_string.py
79
            assert np.array_equal(5, csr.nnz())
80 81 82
            assert np.array_equal(crows, csr.crows().numpy())
            assert np.array_equal(cols, csr.cols().numpy())
            assert np.array_equal(values, csr.values().numpy())
83 84 85 86 87 88 89

    def test_place(self):
        with _test_eager_guard():
            place = core.CPUPlace()
            indices = [[0, 1], [0, 1]]
            values = [1.0, 2.0]
            dense_shape = [2, 2]
90 91 92 93
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices,
                                                           values,
                                                           dense_shape,
                                                           place=place)
94
            assert coo.place.is_cpu_place()
95 96
            assert coo.values().place.is_cpu_place()
            assert coo.indices().place.is_cpu_place()
97 98 99 100

            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
101 102 103 104
            csr = paddle.incubate.sparse.sparse_csr_tensor(crows,
                                                           cols,
                                                           values, [3, 5],
                                                           place=place)
105
            assert csr.place.is_cpu_place()
106 107 108
            assert csr.crows().place.is_cpu_place()
            assert csr.cols().place.is_cpu_place()
            assert csr.values().place.is_cpu_place()
109 110 111 112 113 114 115 116

    def test_dtype(self):
        with _test_eager_guard():
            indices = [[0, 1], [0, 1]]
            values = [1.0, 2.0]
            dense_shape = [2, 2]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
117 118 119 120
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices,
                                                           values,
                                                           dense_shape,
                                                           dtype='float64')
121 122 123 124 125
            assert coo.dtype == paddle.float64

            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
126 127 128 129
            csr = paddle.incubate.sparse.sparse_csr_tensor(crows,
                                                           cols,
                                                           values, [3, 5],
                                                           dtype='float16')
130 131 132 133 134 135 136 137
            assert csr.dtype == paddle.float16

    def test_create_coo_no_shape(self):
        with _test_eager_guard():
            indices = [[0, 1], [0, 1]]
            values = [1.0, 2.0]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
138
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices, values)
139 140 141 142
            assert [2, 2] == coo.shape


class TestSparseConvert(unittest.TestCase):
143

144 145 146
    def test_to_sparse_coo(self):
        with _test_eager_guard():
            x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
147 148 149
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
            dense_x = paddle.to_tensor(x, dtype='float32', stop_gradient=False)
150
            out = dense_x.to_sparse_coo(2)
151 152 153 154 155
            assert np.array_equal(out.indices().numpy(), indices)
            assert np.array_equal(out.values().numpy(), values)
            #test to_sparse_coo_grad backward
            out_grad_indices = [[0, 1], [0, 1]]
            out_grad_values = [2.0, 3.0]
156
            out_grad = paddle.incubate.sparse.sparse_coo_tensor(
157
                paddle.to_tensor(out_grad_indices),
158 159 160
                paddle.to_tensor(out_grad_values),
                shape=out.shape,
                stop_gradient=True)
161 162 163 164 165
            out.backward(out_grad)
            assert np.array_equal(dense_x.grad.numpy(),
                                  out_grad.to_dense().numpy())

    def test_coo_to_dense(self):
166
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
167 168 169
        with _test_eager_guard():
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
            indices_dtypes = ['int32', 'int64']
            for indices_dtype in indices_dtypes:
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                    paddle.to_tensor(indices, dtype=indices_dtype),
                    paddle.to_tensor(values),
                    shape=[3, 4],
                    stop_gradient=False)
                dense_tensor = sparse_x.to_dense()
                #test to_dense_grad backward
                out_grad = [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
                            [9.0, 10.0, 11.0, 12.0]]
                dense_tensor.backward(paddle.to_tensor(out_grad))
                #mask the out_grad by sparse_x.indices()
                correct_x_grad = [2.0, 4.0, 7.0, 9.0, 10.0]
                assert np.array_equal(correct_x_grad,
                                      sparse_x.grad.values().numpy())

                paddle.device.set_device("cpu")
                sparse_x_cpu = paddle.incubate.sparse.sparse_coo_tensor(
                    paddle.to_tensor(indices, dtype=indices_dtype),
                    paddle.to_tensor(values),
                    shape=[3, 4],
                    stop_gradient=False)
                dense_tensor_cpu = sparse_x_cpu.to_dense()
                dense_tensor_cpu.backward(paddle.to_tensor(out_grad))
                assert np.array_equal(correct_x_grad,
                                      sparse_x_cpu.grad.values().numpy())
197
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
198

199 200 201
    def test_to_sparse_csr(self):
        with _test_eager_guard():
            x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
202 203 204
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
205
            dense_x = paddle.to_tensor(x)
206
            out = dense_x.to_sparse_csr()
207 208 209
            assert np.array_equal(out.crows().numpy(), crows)
            assert np.array_equal(out.cols().numpy(), cols)
            assert np.array_equal(out.values().numpy(), values)
210

211
            dense_tensor = out.to_dense()
212 213
            assert np.array_equal(dense_tensor.numpy(), x)

214
    def test_coo_values_grad(self):
215
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
216 217 218
        with _test_eager_guard():
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
219
            sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
220
                paddle.to_tensor(indices),
221 222 223
                paddle.to_tensor(values),
                shape=[3, 4],
                stop_gradient=False)
224 225 226 227 228
            values_tensor = sparse_x.values()
            out_grad = [2.0, 3.0, 5.0, 8.0, 9.0]
            # test coo_values_grad
            values_tensor.backward(paddle.to_tensor(out_grad))
            assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
229 230 231
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0],
                      [5.0, 5.0]]
232
            sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
233 234 235 236 237 238 239 240 241 242
                paddle.to_tensor(indices),
                paddle.to_tensor(values),
                shape=[3, 4, 2],
                stop_gradient=False)
            values_tensor = sparse_x.values()
            out_grad = [[2.0, 2.0], [3.0, 3.0], [5.0, 5.0], [8.0, 8.0],
                        [9.0, 9.0]]
            # test coo_values_grad
            values_tensor.backward(paddle.to_tensor(out_grad))
            assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
243
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
244

245 246
    def test_sparse_coo_tensor_grad(self):
        with _test_eager_guard():
247
            for device in devices:
248 249
                if device == 'cpu' or (device == 'gpu'
                                       and paddle.is_compiled_with_cuda()):
250 251 252 253
                    paddle.device.set_device(device)
                    indices = [[0, 1], [0, 1]]
                    values = [1, 2]
                    indices = paddle.to_tensor(indices, dtype='int32')
254 255 256
                    values = paddle.to_tensor(values,
                                              dtype='float32',
                                              stop_gradient=False)
257
                    sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
258 259 260 261 262
                        indices, values, shape=[2, 2], stop_gradient=False)
                    grad_indices = [[0, 1], [1, 1]]
                    grad_values = [2, 3]
                    grad_indices = paddle.to_tensor(grad_indices, dtype='int32')
                    grad_values = paddle.to_tensor(grad_values, dtype='float32')
263
                    sparse_out_grad = paddle.incubate.sparse.sparse_coo_tensor(
264 265 266 267 268
                        grad_indices, grad_values, shape=[2, 2])
                    sparse_x.backward(sparse_out_grad)
                    correct_values_grad = [0, 3]
                    assert np.array_equal(correct_values_grad,
                                          values.grad.numpy())
269

270 271
                    # test the non-zero values is a vector
                    values = [[1, 1], [2, 2]]
272 273 274
                    values = paddle.to_tensor(values,
                                              dtype='float32',
                                              stop_gradient=False)
275
                    sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
276 277 278
                        indices, values, shape=[2, 2, 2], stop_gradient=False)
                    grad_values = [[2, 2], [3, 3]]
                    grad_values = paddle.to_tensor(grad_values, dtype='float32')
279
                    sparse_out_grad = paddle.incubate.sparse.sparse_coo_tensor(
280 281 282 283 284 285
                        grad_indices, grad_values, shape=[2, 2, 2])
                    sparse_x.backward(sparse_out_grad)
                    correct_values_grad = [[0, 0], [3, 3]]
                    assert np.array_equal(correct_values_grad,
                                          values.grad.numpy())

286 287 288
    def test_sparse_coo_tensor_sorted(self):
        with _test_eager_guard():
            for device in devices:
289 290
                if device == 'cpu' or (device == 'gpu'
                                       and paddle.is_compiled_with_cuda()):
291
                    paddle.device.set_device(device)
292
                    #test unsorted and duplicate indices
293 294 295 296
                    indices = [[1, 0, 0], [0, 1, 1]]
                    values = [1.0, 2.0, 3.0]
                    indices = paddle.to_tensor(indices, dtype='int32')
                    values = paddle.to_tensor(values, dtype='float32')
297 298
                    sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                        indices, values)
Z
zhangkaihuo 已提交
299
                    sparse_x = paddle.incubate.sparse.coalesce(sparse_x)
300 301 302 303 304 305 306
                    indices_sorted = [[0, 1], [1, 0]]
                    values_sorted = [5.0, 1.0]
                    assert np.array_equal(indices_sorted,
                                          sparse_x.indices().numpy())
                    assert np.array_equal(values_sorted,
                                          sparse_x.values().numpy())

307 308 309
                    # test the non-zero values is a vector
                    values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]
                    values = paddle.to_tensor(values, dtype='float32')
310 311
                    sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                        indices, values)
Z
zhangkaihuo 已提交
312
                    sparse_x = paddle.incubate.sparse.coalesce(sparse_x)
313 314 315 316 317 318
                    values_sorted = [[5.0, 5.0], [1.0, 1.0]]
                    assert np.array_equal(indices_sorted,
                                          sparse_x.indices().numpy())
                    assert np.array_equal(values_sorted,
                                          sparse_x.values().numpy())

Z
zhangkaihuo 已提交
319 320
    def test_batch_csr(self):
        with _test_eager_guard():
Z
zhangkaihuo 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

            def verify(dense_x):
                sparse_x = dense_x.to_sparse_csr()
                out = sparse_x.to_dense()
                assert np.allclose(out.numpy(), dense_x.numpy())

            shape = np.random.randint(low=1, high=10, size=3)
            shape = list(shape)
            dense_x = paddle.randn(shape)
            dense_x = paddle.nn.functional.dropout(dense_x, p=0.5)
            verify(dense_x)

            #test batchs=1
            shape[0] = 1
            dense_x = paddle.randn(shape)
            dense_x = paddle.nn.functional.dropout(dense_x, p=0.5)
            verify(dense_x)

Z
zhangkaihuo 已提交
339
            shape = np.random.randint(low=3, high=10, size=3)
Z
zhangkaihuo 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
            shape = list(shape)
            dense_x = paddle.randn(shape)
            #set the 0th batch to zero
            dense_x[0] = 0
            verify(dense_x)

            dense_x = paddle.randn(shape)
            #set the 1th batch to zero
            dense_x[1] = 0
            verify(dense_x)

            dense_x = paddle.randn(shape)
            #set the 2th batch to zero
            dense_x[2] = 0
            verify(dense_x)
Z
zhangkaihuo 已提交
355

356 357

class TestCooError(unittest.TestCase):
358

359 360 361 362 363 364 365
    def test_small_shape(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                indices = [[2, 3], [0, 2]]
                values = [1, 2]
                # 1. the shape too small
                dense_shape = [2, 2]
366
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
367 368 369 370 371 372 373 374
                    indices, values, shape=dense_shape)

    def test_same_nnz(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                # 2. test the nnz of indices must same as nnz of values
                indices = [[1, 2], [1, 0]]
                values = [1, 2, 3]
375 376
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                    indices, values)
377 378 379 380 381 382 383

    def test_same_dimensions(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                indices = [[1, 2], [1, 0]]
                values = [1, 2, 3]
                shape = [2, 3, 4]
384 385 386
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(indices,
                                                                    values,
                                                                    shape=shape)
387 388 389 390 391 392

    def test_indices_dtype(self):
        with _test_eager_guard():
            with self.assertRaises(TypeError):
                indices = [[1.0, 2.0], [0, 1]]
                values = [1, 2]
393 394
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                    indices, values)
395 396 397


class TestCsrError(unittest.TestCase):
398

399 400 401 402 403 404 405
    def test_dimension1(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3]
406 407
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
408 409 410 411 412 413 414 415

    def test_dimension2(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3, 3, 3, 3]
416 417
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
418 419 420 421 422 423 424 425

    def test_same_shape1(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2, 3]
                values = [1, 2, 3]
                shape = [3, 4]
426 427
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
428

429 430 431 432 433 434 435
    def test_same_shape2(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2, 3]
                values = [1, 2, 3, 4]
                shape = [3, 4]
436 437
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
438 439 440 441 442 443 444 445

    def test_same_shape3(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3, 0, 1, 2]
                cols = [0, 1, 2, 3, 0, 1, 2]
                values = [1, 2, 3, 4, 0, 1, 2]
                shape = [2, 3, 4]
446 447
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
448 449 450 451 452 453 454 455

    def test_crows_first_value(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [1, 1, 2, 3]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3, 4]
456 457
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
458 459 460 461 462 463 464 465

    def test_dtype(self):
        with _test_eager_guard():
            with self.assertRaises(TypeError):
                crows = [0, 1, 2, 3.0]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3]
466 467
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
468

469 470 471

if __name__ == "__main__":
    unittest.main()