Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
682acd22
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
682acd22
编写于
7月 12, 2022
作者:
zhouweiwei2014
提交者:
GitHub
7月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Sparse]add sparse unary api(sin/tan/pow/neg/log1p/square/cast...) (#44022)
上级
51e2933d
变更
28
隐藏空白更改
内联
并排
Showing
28 changed file
with
2036 addition
and
846 deletion
+2036
-846
paddle/fluid/pybind/eager_method.cc
paddle/fluid/pybind/eager_method.cc
+25
-0
paddle/phi/api/yaml/generator/sparse_bw_api_gen.py
paddle/phi/api/yaml/generator/sparse_bw_api_gen.py
+1
-0
paddle/phi/api/yaml/sparse_api.yaml
paddle/phi/api/yaml/sparse_api.yaml
+151
-17
paddle/phi/api/yaml/sparse_bw_api.yaml
paddle/phi/api/yaml/sparse_bw_api.yaml
+125
-4
paddle/phi/kernels/activation_grad_kernel.h
paddle/phi/kernels/activation_grad_kernel.h
+8
-0
paddle/phi/kernels/activation_kernel.h
paddle/phi/kernels/activation_kernel.h
+8
-19
paddle/phi/kernels/funcs/eigen/eigen_function.h
paddle/phi/kernels/funcs/eigen/eigen_function.h
+12
-0
paddle/phi/kernels/funcs/eigen/elementwise.cc
paddle/phi/kernels/funcs/eigen/elementwise.cc
+17
-0
paddle/phi/kernels/funcs/eigen/elementwise.cu
paddle/phi/kernels/funcs/eigen/elementwise.cu
+17
-0
paddle/phi/kernels/sparse/cpu/unary_grad_kernel.cc
paddle/phi/kernels/sparse/cpu/unary_grad_kernel.cc
+79
-0
paddle/phi/kernels/sparse/cpu/unary_kernel.cc
paddle/phi/kernels/sparse/cpu/unary_kernel.cc
+139
-0
paddle/phi/kernels/sparse/gpu/unary_grad_kernel.cu
paddle/phi/kernels/sparse/gpu/unary_grad_kernel.cu
+79
-0
paddle/phi/kernels/sparse/gpu/unary_kernel.cu
paddle/phi/kernels/sparse/gpu/unary_kernel.cu
+142
-0
paddle/phi/kernels/sparse/impl/unary_grad_kernel_impl.h
paddle/phi/kernels/sparse/impl/unary_grad_kernel_impl.h
+141
-0
paddle/phi/kernels/sparse/impl/unary_kernel_impl.h
paddle/phi/kernels/sparse/impl/unary_kernel_impl.h
+207
-0
paddle/phi/kernels/sparse/unary_grad_kernel.cc
paddle/phi/kernels/sparse/unary_grad_kernel.cc
+0
-183
paddle/phi/kernels/sparse/unary_grad_kernel.h
paddle/phi/kernels/sparse/unary_grad_kernel.h
+54
-14
paddle/phi/kernels/sparse/unary_kernel.cc
paddle/phi/kernels/sparse/unary_kernel.cc
+0
-177
paddle/phi/kernels/sparse/unary_kernel.h
paddle/phi/kernels/sparse/unary_kernel.h
+82
-13
paddle/phi/tests/kernels/test_sparse_activation_dev_api.cc
paddle/phi/tests/kernels/test_sparse_activation_dev_api.cc
+2
-2
python/paddle/fluid/tests/unittests/test_sparse_elementwise_op.py
...addle/fluid/tests/unittests/test_sparse_elementwise_op.py
+4
-6
python/paddle/fluid/tests/unittests/test_sparse_model.py
python/paddle/fluid/tests/unittests/test_sparse_model.py
+4
-0
python/paddle/fluid/tests/unittests/test_sparse_unary_op.py
python/paddle/fluid/tests/unittests/test_sparse_unary_op.py
+121
-116
python/paddle/fluid/tests/unittests/test_sparse_utils_op.py
python/paddle/fluid/tests/unittests/test_sparse_utils_op.py
+2
-2
python/paddle/incubate/sparse/__init__.py
python/paddle/incubate/sparse/__init__.py
+30
-7
python/paddle/incubate/sparse/binary.py
python/paddle/incubate/sparse/binary.py
+198
-1
python/paddle/incubate/sparse/math.py
python/paddle/incubate/sparse/math.py
+0
-260
python/paddle/incubate/sparse/unary.py
python/paddle/incubate/sparse/unary.py
+388
-25
未找到文件。
paddle/fluid/pybind/eager_method.cc
浏览文件 @
682acd22
...
...
@@ -1473,6 +1473,27 @@ static PyObject* tensor_method_get_map_tensor(TensorObject* self,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_get_non_zero_nums
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
PADDLE_ENFORCE
(
self
->
tensor
.
is_sparse_coo_tensor
()
||
self
->
tensor
.
is_sparse_csr_tensor
(),
paddle
::
platform
::
errors
::
Fatal
(
"this method is only effective for "
"SparseCooTensor or SparseCsrTensor"
));
if
(
self
->
tensor
.
is_sparse_coo_tensor
())
{
auto
sparse_coo_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
SparseCooTensor
>
(
self
->
tensor
.
impl
());
return
ToPyObject
(
sparse_coo_tensor
->
nnz
());
}
else
{
auto
sparse_csr_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
SparseCsrTensor
>
(
self
->
tensor
.
impl
());
return
ToPyObject
(
sparse_csr_tensor
->
nnz
());
}
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_get_non_zero_indices
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
...
...
@@ -1962,6 +1983,10 @@ PyMethodDef variable_methods[] = {
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
/***the method of sparse tensor****/
{
"nnz"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_nums
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"indices"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_indices
,
METH_VARARGS
|
METH_KEYWORDS
,
...
...
paddle/phi/api/yaml/generator/sparse_bw_api_gen.py
浏览文件 @
682acd22
...
...
@@ -109,6 +109,7 @@ def source_include(header_file_path):
#include "glog/logging.h"
#include "paddle/phi/api/include/sparse_api.h"
#include "paddle/phi/api/lib/api_gen_utils.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/sparse_api_custom_impl.h"
...
...
paddle/phi/api/yaml/sparse_api.yaml
浏览文件 @
682acd22
-
api
:
abs
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
abs_coo{sparse_coo -> sparse_coo},
abs_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
abs_grad
-
api
:
acos
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
acos_coo{sparse_coo -> sparse_coo},
acos_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
acos_grad
-
api
:
acosh
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
acosh_coo{sparse_coo -> sparse_coo},
acosh_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
acosh_grad
-
api
:
add
args
:
(Tensor x, Tensor y)
output
:
Tensor(out)
kernel
:
func
:
add_coo_coo{sparse_coo -> sparse_coo},
add_csr_csr{sparse_csr -> sparse_csr}
func
:
add_coo_coo{sparse_coo
, sparse_coo
-> sparse_coo},
add_csr_csr{sparse_csr
, sparse_csr
-> sparse_csr}
layout
:
x
backward
:
add_grad
-
api
:
asin
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
asin_coo{sparse_coo -> sparse_coo},
asin_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
asin_grad
-
api
:
asinh
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
asinh_coo{sparse_coo -> sparse_coo},
asinh_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
asinh_grad
-
api
:
atan
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
atan_coo{sparse_coo -> sparse_coo},
atan_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
atan_grad
-
api
:
atanh
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
atanh_coo{sparse_coo -> sparse_coo},
atanh_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
atanh_grad
-
api
:
cast
args
:
(Tensor x, DataType index_dtype=DataType::UNDEFINED, DataType value_dtype=DataType::UNDEFINED)
output
:
Tensor(out)
kernel
:
func
:
cast_coo{sparse_coo -> sparse_coo},
cast_csr{sparse_csr -> sparse_csr}
layout
:
x
data_type
:
x
backward
:
cast_grad
-
api
:
conv3d
args
:
(Tensor x, Tensor kernel, int[] paddings, int[] dilations, int[] strides, int groups, bool subm)
output
:
Tensor(out), Tensor(rulebook)
...
...
@@ -41,38 +114,81 @@
args
:
(Tensor x, Tensor y)
output
:
Tensor(out)
kernel
:
func
:
divide_coo_coo{sparse_coo -> sparse_coo},
divide_csr_csr{sparse_csr -> sparse_csr}
func
:
divide_coo_coo{sparse_coo
, sparse_coo
-> sparse_coo},
divide_csr_csr{sparse_csr
, sparse_csr
-> sparse_csr}
layout
:
x
backward
:
divide_grad
-
api
:
divide_scalar
args
:
(Tensor x, float scalar)
output
:
Tensor(out)
kernel
:
func
:
divide_coo_scalar{sparse_coo -> sparse_coo},
divide_csr_scalar{sparse_csr -> sparse_csr}
backward
:
divide_scalar_grad
-
api
:
log1p
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
log1p_coo{sparse_coo -> sparse_coo},
log1p_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
log1p_grad
-
api
:
multiply
args
:
(Tensor x, Tensor y)
output
:
Tensor(out)
kernel
:
func
:
multiply_coo_coo{sparse_coo -> sparse_coo},
multiply_csr_csr{sparse_csr -> sparse_csr}
func
:
multiply_coo_coo{sparse_coo
, sparse_coo
-> sparse_coo},
multiply_csr_csr{sparse_csr
, sparse_csr
-> sparse_csr}
layout
:
x
backward
:
multiply_grad
-
api
:
pow
args
:
(Tensor x, float factor)
output
:
Tensor(out)
kernel
:
func
:
pow_coo{sparse_coo -> sparse_coo},
pow_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
pow_grad
-
api
:
relu
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
sparse_coo_relu
{sparse_coo -> sparse_coo},
sparse_csr_relu
{sparse_csr -> sparse_csr}
func
:
relu_coo
{sparse_coo -> sparse_coo},
relu_csr
{sparse_csr -> sparse_csr}
layout
:
x
backward
:
relu_grad
-
api
:
scale
args
:
(Tensor x, float scale, float bias, bool bias_after_scale)
output
:
Tensor(out)
kernel
:
func
:
scale_coo{sparse_coo -> sparse_coo},
scale_csr{sparse_csr -> sparse_csr}
backward
:
scale_grad
-
api
:
sin
args
:
(Tensor x)
output
:
Tensor(out
@SparseCooTensor
)
output
:
Tensor(out)
kernel
:
func
:
s
parse_coo_sin
{sparse_coo -> sparse_coo},
s
parse_csr_sin
{sparse_csr -> sparse_csr}
func
:
s
in_coo
{sparse_coo -> sparse_coo},
s
in_csr
{sparse_csr -> sparse_csr}
layout
:
x
backward
:
sin_grad
-
api
:
sinh
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
sinh_coo{sparse_coo -> sparse_coo},
sinh_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
sinh_grad
-
api
:
softmax
args
:
(Tensor x, int axis=-1)
output
:
Tensor(out)
...
...
@@ -85,26 +201,44 @@
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
s
parse_coo_sqrt
{sparse_coo -> sparse_coo},
s
parse_csr_sqrt
{sparse_csr -> sparse_csr}
func
:
s
qrt_coo
{sparse_coo -> sparse_coo},
s
qrt_csr
{sparse_csr -> sparse_csr}
layout
:
x
backward
:
sqrt_grad
-
api
:
square
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
square_coo{sparse_coo -> sparse_coo},
square_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
square_grad
-
api
:
subtract
args
:
(Tensor x, Tensor y)
output
:
Tensor(out)
kernel
:
func
:
subtract_coo_coo{sparse_coo -> sparse_coo},
subtract_csr_csr{sparse_csr -> sparse_csr}
func
:
subtract_coo_coo{sparse_coo
, sparse_coo
-> sparse_coo},
subtract_csr_csr{sparse_csr
, sparse_csr
-> sparse_csr}
layout
:
x
backward
:
subtract_grad
-
api
:
tan
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
tan_coo{sparse_coo -> sparse_coo},
tan_csr{sparse_csr -> sparse_csr}
layout
:
x
backward
:
tan_grad
-
api
:
tanh
args
:
(Tensor x)
output
:
Tensor(out)
kernel
:
func
:
sparse_coo_tanh
{sparse_coo -> sparse_coo},
sparse_csr_tanh
{sparse_csr -> sparse_csr}
func
:
tanh_coo
{sparse_coo -> sparse_coo},
tanh_csr
{sparse_csr -> sparse_csr}
layout
:
x
backward
:
tanh_grad
...
...
paddle/phi/api/yaml/sparse_bw_api.yaml
浏览文件 @
682acd22
-
backward_api
:
abs_grad
forward
:
tanh(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
abs_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
abs_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
acos_grad
forward
:
acos(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
acos_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
acos_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
acosh_grad
forward
:
acosh(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
acosh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
acosh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
add_grad
forward
:
add(Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad)
...
...
@@ -6,6 +30,47 @@
func
:
add_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
add_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
-
backward_api
:
asin_grad
forward
:
asin(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
asin_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
asin_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
asinh_grad
forward
:
asinh(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
asinh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
asinh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
atan_grad
forward
:
atan(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
atan_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
atan_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
atanh_grad
forward
:
atanh(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
atanh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
atanh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
cast_grad
forward
:
cast(Tensor x, DataType index_dtype, DataType value_dtype) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad, DataType value_dtype)
output
:
Tensor(x_grad)
kernel
:
func
:
cast_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
cast_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
data_type
:
out_grad
-
backward_api
:
conv3d_grad
forward
:
conv3d (Tensor x, Tensor kernel, int[] paddings, int[] dilations, int[] strides, int groups, bool subm) -> Tensor(out@SparseCooTensor), Tensor(rulebook@DenseTensor)
args
:
(Tensor x, Tensor kernel, Tensor rulebook, Tensor out_grad, int[] paddings, int[] dilations, int[] strides, int groups, bool subm)
...
...
@@ -41,6 +106,20 @@
func
:
divide_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
divide_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
-
backward_api
:
divide_scalar_grad
forward
:
divide_scalar (Tensor x, float scalar) -> Tensor(out)
args
:
(Tensor out_grad, float scalar)
output
:
Tensor(x_grad)
invoke
:
divide_scalar(out_grad, scalar)
-
backward_api
:
log1p_grad
forward
:
log1p(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
log1p_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
log1p_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
masked_matmul_grad
forward
:
masked_matmul(Tensor x, Tensor y, Tensor mask) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad)
...
...
@@ -71,19 +150,43 @@
func
:
mv_coo_grad{sparse_coo, dense, dense -> sparse_coo, dense},
mv_csr_grad{sparse_csr, dense, dense -> sparse_csr, dense}
-
backward_api
:
pow_grad
forward
:
pow(Tensor x, float factor) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad, float factor)
output
:
Tensor(x_grad)
kernel
:
func
:
pow_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
pow_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
relu_grad
forward
:
relu(Tensor x) -> Tensor(out)
args
:
(Tensor out, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
sparse_coo_relu_grad {sparse_coo, sparse_coo -> sparse_coo}
func
:
relu_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
relu_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
scale_grad
forward
:
scale(Tensor x, float scale, float bias, bool bias_after_scale) -> Tensor(out)
args
:
(Tensor out_grad, float scale)
output
:
Tensor(x_grad)
invoke
:
scale(out_grad, scale, 0.0,
true
)
-
backward_api
:
sin_grad
forward
:
sin(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
sparse_coo_sin_grad {sparse_coo, sparse_coo -> sparse_coo}
func
:
sin_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
sin_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
sinh_grad
forward
:
sinh(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
sinh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
sinh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
softmax_grad
forward
:
softmax(Tensor x, int axis=-1) -> Tensor(out)
...
...
@@ -104,7 +207,16 @@
args
:
(Tensor out, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
sparse_coo_sqrt_grad {sparse_coo, sparse_coo -> sparse_coo}
func
:
sqrt_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
sqrt_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
square_grad
forward
:
square(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
square_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
square_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
subtract_grad
forward
:
subtract(Tensor x, Tensor y) -> Tensor(out)
...
...
@@ -114,12 +226,21 @@
func
:
subtract_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
subtract_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
-
backward_api
:
tan_grad
forward
:
tan(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
tan_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
tan_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
tanh_grad
forward
:
tanh(Tensor x) -> Tensor(out)
args
:
(Tensor out, Tensor out_grad)
output
:
Tensor(x_grad)
kernel
:
func
:
sparse_coo_tanh_grad {sparse_coo, sparse_coo -> sparse_coo}
func
:
tanh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
tanh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
-
backward_api
:
values_grad
forward
:
coo_values(Tensor x) -> Tensor(out)
...
...
paddle/phi/kernels/activation_grad_kernel.h
浏览文件 @
682acd22
...
...
@@ -212,12 +212,17 @@ DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Acosh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Atanh
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
TanhShrink
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Silu
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Square
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
LogSigmoid
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Log
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Log2
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Log10
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX
(
Log1p
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT
(
Exp
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT
(
Expm1
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT
(
Reciprocal
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT
(
Rsqrt
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT
(
Relu
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT
(
Tanh
);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT
(
Sigmoid
);
...
...
@@ -233,9 +238,12 @@ DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(SoftShrink, lambda);
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX
(
HardShrink
,
threshold
);
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX
(
Swish
,
beta
);
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX
(
Logit
,
eps
);
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX
(
Mish
,
threshold
);
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX
(
Celu
,
alpha
);
DECLARE_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX
(
BRelu
,
t_min
,
t_max
);
DECLARE_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX
(
STanh
,
scale_a
,
scale_b
);
DECLARE_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX
(
Softplus
,
beta
,
threshold
);
DECLARE_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT
(
HardSigmoid
,
slope
,
offset
);
...
...
paddle/phi/kernels/activation_kernel.h
浏览文件 @
682acd22
...
...
@@ -40,12 +40,12 @@ namespace phi {
float attr2, \
DenseTensor* out);
DECLARE_ACTIVATION_KERNEL
(
Sin
)
DECLARE_ACTIVATION_KERNEL
(
Cos
)
DECLARE_ACTIVATION_KERNEL
(
Tan
)
DECLARE_ACTIVATION_KERNEL
(
Acos
)
DECLARE_ACTIVATION_KERNEL
(
Sin
)
DECLARE_ACTIVATION_KERNEL
(
Asin
)
DECLARE_ACTIVATION_KERNEL
(
Atan
)
DECLARE_ACTIVATION_KERNEL
(
Acos
)
DECLARE_ACTIVATION_KERNEL
(
Sinh
)
DECLARE_ACTIVATION_KERNEL
(
Cosh
)
DECLARE_ACTIVATION_KERNEL
(
Asinh
)
...
...
@@ -53,15 +53,14 @@ DECLARE_ACTIVATION_KERNEL(Acosh)
DECLARE_ACTIVATION_KERNEL
(
Atanh
)
DECLARE_ACTIVATION_KERNEL
(
Relu
)
DECLARE_ACTIVATION_KERNEL
(
Tanh
)
DECLARE_ACTIVATION_KERNEL
(
TanhShrink
)
DECLARE_ACTIVATION_KERNEL
(
Silu
)
DECLARE_ACTIVATION_KERNEL
(
Exp
)
DECLARE_ACTIVATION_KERNEL
(
Expm1
)
DECLARE_ACTIVATION_KERNEL
(
Reciprocal
)
DECLARE_ACTIVATION_KERNEL
(
Square
)
DECLARE_ACTIVATION_KERNEL
(
Sqrt
)
DECLARE_ACTIVATION_KERNEL
(
Rsqrt
)
DECLARE_ACTIVATION_KERNEL
(
TanhShrink
)
DECLARE_ACTIVATION_KERNEL
(
Silu
)
DECLARE_ACTIVATION_KERNEL
(
Sigmoid
)
DECLARE_ACTIVATION_KERNEL
(
LogSigmoid
)
DECLARE_ACTIVATION_KERNEL
(
Log
)
...
...
@@ -77,28 +76,18 @@ DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS(LeakyRelu, alpha)
DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS
(
ThresholdedRelu
,
threshold
)
DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS
(
Relu6
,
threshold
)
DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS
(
SoftShrink
,
lambda
)
DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS
(
Mish
,
threshold
)
DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS
(
HardShrink
,
threshold
)
DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS
(
SoftShrink
,
lambda
)
DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS
(
Elu
,
alpha
)
DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS
(
Swish
,
beta
)
DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS
(
Celu
,
alpha
)
DECLARE_ACTIVATION_KERNEL_WITH_ONE_ATTRS
(
Logit
,
eps
)
DECLARE_ACTIVATION_KERNEL_WITH_TWO_ATTRS
(
BRelu
,
t_min
,
t_max
)
DECLARE_ACTIVATION_KERNEL_WITH_TWO_ATTRS
(
STanh
,
scale_a
,
scale_b
)
DECLARE_ACTIVATION_KERNEL_WITH_TWO_ATTRS
(
HardSigmoid
,
slope
,
offset
)
DECLARE_ACTIVATION_KERNEL_WITH_TWO_ATTRS
(
Softplus
,
beta
,
threshold
)
template
<
typename
T
,
typename
Context
>
void
LogitKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
float
eps
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
MishKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
float
threshold
,
DenseTensor
*
out
);
DECLARE_ACTIVATION_KERNEL_WITH_TWO_ATTRS
(
HardSigmoid
,
slope
,
offset
)
template
<
typename
T
,
typename
Context
>
void
HardSwishKernel
(
const
Context
&
dev_ctx
,
...
...
paddle/phi/kernels/funcs/eigen/eigen_function.h
浏览文件 @
682acd22
...
...
@@ -118,6 +118,18 @@ struct EigenSub {
const
InType
&
right
);
};
template
<
typename
EigenDevice
,
typename
T
>
struct
EigenDiv
{
using
InType
=
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
const
T
,
1
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
;
using
OutType
=
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
T
,
1
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
;
static
void
Eval
(
const
EigenDevice
&
dev
,
OutType
out
,
const
InType
&
in
,
const
T
value
);
};
template
<
typename
EigenDevice
,
typename
T
,
int
Rank
>
struct
EigenSlice
{
using
Array
=
Eigen
::
DSizes
<
Eigen
::
DenseIndex
,
Rank
>
;
...
...
paddle/phi/kernels/funcs/eigen/elementwise.cc
浏览文件 @
682acd22
...
...
@@ -55,5 +55,22 @@ struct EigenSub<Eigen::DefaultDevice, T> {
template
struct
EigenSub
<
Eigen
::
DefaultDevice
,
float
>;
template
<
typename
T
>
struct
EigenDiv
<
Eigen
::
DefaultDevice
,
T
>
{
using
InType
=
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
const
T
,
1
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
;
using
OutType
=
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
T
,
1
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
;
static
void
Eval
(
const
Eigen
::
DefaultDevice
&
dev
,
OutType
out
,
const
InType
&
in
,
const
T
value
)
{
out
.
device
(
dev
)
=
in
/
value
;
}
};
template
struct
EigenDiv
<
Eigen
::
DefaultDevice
,
float
>;
template
struct
EigenDiv
<
Eigen
::
DefaultDevice
,
double
>;
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/funcs/eigen/elementwise.cu
浏览文件 @
682acd22
...
...
@@ -55,5 +55,22 @@ struct EigenSub<Eigen::GpuDevice, T> {
template
struct
EigenSub
<
Eigen
::
GpuDevice
,
float
>;
template
<
typename
T
>
struct
EigenDiv
<
Eigen
::
GpuDevice
,
T
>
{
using
InType
=
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
const
T
,
1
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
;
using
OutType
=
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
T
,
1
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>>
;
static
void
Eval
(
const
Eigen
::
GpuDevice
&
dev
,
OutType
out
,
const
InType
&
in
,
const
T
value
)
{
out
.
device
(
dev
)
=
in
/
value
;
}
};
template
struct
EigenDiv
<
Eigen
::
GpuDevice
,
float
>;
template
struct
EigenDiv
<
Eigen
::
GpuDevice
,
double
>;
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/sparse/cpu/unary_grad_kernel.cc
0 → 100644
浏览文件 @
682acd22
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sparse/unary_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/sparse/impl/unary_grad_kernel_impl.h"
#define PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL(name, prefix) \
PD_REGISTER_KERNEL(name##_coo_grad, \
CPU, \
ALL_LAYOUT, \
phi::sparse::prefix##CooGradKernel, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); \
} \
\
PD_REGISTER_KERNEL(name##_csr_grad, \
CPU, \
ALL_LAYOUT, \
phi::sparse::prefix##CsrGradKernel, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); \
}
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
sin
,
Sin
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
tan
,
Tan
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
asin
,
Asin
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
atan
,
Atan
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
sinh
,
Sinh
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
tanh
,
Tanh
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
asinh
,
Asinh
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
atanh
,
Atanh
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
sqrt
,
Sqrt
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
square
,
Square
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
log1p
,
Log1p
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
relu
,
Relu
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
abs
,
Abs
)
PD_REGISTER_SPARSE_UNARY_CPU_GRAD_KERNEL
(
pow
,
Pow
)
PD_REGISTER_KERNEL
(
cast_coo_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CastCooGradKernel
,
float
,
double
,
int8_t
,
uint8_t
,
int16_t
,
int
,
int64_t
,
bool
)
{}
PD_REGISTER_KERNEL
(
cast_csr_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CastCsrGradKernel
,
float
,
double
,
int8_t
,
uint8_t
,
int16_t
,
int
,
int64_t
,
bool
)
{}
paddle/phi/kernels/sparse/cpu/unary_kernel.cc
0 → 100644
浏览文件 @
682acd22
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sparse/unary_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/sparse/impl/unary_grad_kernel_impl.h"
#include "paddle/phi/kernels/sparse/impl/unary_kernel_impl.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
DivCooScalarKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
float
scalar
,
SparseCooTensor
*
out
)
{
EmptyLikeCooKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
out
);
auto
eigen_out
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
(
out
->
mutable_non_zero_elements
()));
auto
eigen_x
=
phi
::
EigenVector
<
T
>::
Flatten
(
x
.
non_zero_elements
());
auto
&
dev
=
*
dev_ctx
.
eigen_device
();
phi
::
funcs
::
EigenDiv
<
std
::
decay_t
<
decltype
(
dev
)
>
,
T
>::
Eval
(
dev
,
eigen_out
,
eigen_x
,
static_cast
<
T
>
(
scalar
));
}
template
<
typename
T
,
typename
Context
>
void
DivCsrScalarKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
float
scalar
,
SparseCsrTensor
*
out
)
{
EmptyLikeCsrKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
out
);
auto
eigen_out
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
(
out
->
mutable_non_zero_elements
()));
auto
eigen_x
=
phi
::
EigenVector
<
T
>::
Flatten
(
x
.
non_zero_elements
());
auto
&
dev
=
*
dev_ctx
.
eigen_device
();
phi
::
funcs
::
EigenDiv
<
std
::
decay_t
<
decltype
(
dev
)
>
,
T
>::
Eval
(
dev
,
eigen_out
,
eigen_x
,
static_cast
<
T
>
(
scalar
));
}
}
// namespace sparse
}
// namespace phi
#define PD_REGISTER_SPARSE_UNARY_CPU_KERNEL(name, prefix) \
PD_REGISTER_KERNEL(name##_coo, \
CPU, \
ALL_LAYOUT, \
phi::sparse::prefix##CooKernel, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); \
} \
\
PD_REGISTER_KERNEL(name##_csr, \
CPU, \
ALL_LAYOUT, \
phi::sparse::prefix##CsrKernel, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); \
}
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
sin
,
Sin
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
tan
,
Tan
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
asin
,
Asin
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
atan
,
Atan
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
sinh
,
Sinh
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
tanh
,
Tanh
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
asinh
,
Asinh
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
atanh
,
Atanh
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
sqrt
,
Sqrt
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
square
,
Square
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
log1p
,
Log1p
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
relu
,
Relu
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
abs
,
Abs
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
pow
,
Pow
)
PD_REGISTER_SPARSE_UNARY_CPU_KERNEL
(
scale
,
Scale
)
PD_REGISTER_KERNEL
(
divide_coo_scalar
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
DivCooScalarKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
divide_csr_scalar
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
DivCsrScalarKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
PD_REGISTER_KERNEL
(
cast_coo
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CastCooKernel
,
float
,
double
,
int8_t
,
uint8_t
,
int16_t
,
int
,
int64_t
,
bool
)
{}
PD_REGISTER_KERNEL
(
cast_csr
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CastCsrKernel
,
float
,
double
,
int8_t
,
uint8_t
,
int16_t
,
int
,
int64_t
,
bool
)
{}
paddle/phi/kernels/sparse/gpu/unary_grad_kernel.cu
0 → 100644
浏览文件 @
682acd22
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sparse/unary_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/sparse/impl/unary_grad_kernel_impl.h"
#define PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL(name, prefix) \
PD_REGISTER_KERNEL(name##_coo_grad, \
GPU, \
ALL_LAYOUT, \
phi::sparse::prefix##CooGradKernel, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); \
} \
\
PD_REGISTER_KERNEL(name##_csr_grad, \
GPU, \
ALL_LAYOUT, \
phi::sparse::prefix##CsrGradKernel, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); \
}
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
sin
,
Sin
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
tan
,
Tan
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
asin
,
Asin
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
atan
,
Atan
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
sinh
,
Sinh
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
tanh
,
Tanh
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
asinh
,
Asinh
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
atanh
,
Atanh
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
sqrt
,
Sqrt
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
square
,
Square
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
log1p
,
Log1p
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
relu
,
Relu
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
abs
,
Abs
)
PD_REGISTER_SPARSE_UNARY_GPU_GRAD_KERNEL
(
pow
,
Pow
)
PD_REGISTER_KERNEL
(
cast_coo_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CastCooGradKernel
,
float
,
double
,
int8_t
,
uint8_t
,
int16_t
,
int
,
int64_t
,
bool
)
{}
PD_REGISTER_KERNEL
(
cast_csr_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CastCsrGradKernel
,
float
,
double
,
int8_t
,
uint8_t
,
int16_t
,
int
,
int64_t
,
bool
)
{}
paddle/phi/kernels/sparse/gpu/unary_kernel.cu
0 → 100644
浏览文件 @
682acd22
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sparse/unary_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/sparse/impl/unary_kernel_impl.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
>
struct
DivScalarFunctor
{
T
value_
;
explicit
DivScalarFunctor
(
T
value
)
:
value_
(
value
)
{}
__device__
__forceinline__
T
operator
()(
const
T
x
)
const
{
return
x
/
value_
;
}
};
template
<
typename
T
,
typename
Context
>
void
DivCooScalarKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
float
scalar
,
SparseCooTensor
*
out
)
{
EmptyLikeCooKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
out
);
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
(
x
.
non_zero_elements
())};
std
::
vector
<
DenseTensor
*>
outs
=
{
out
->
mutable_non_zero_elements
()};
DivScalarFunctor
<
T
>
func
(
static_cast
<
T
>
(
scalar
));
funcs
::
ElementwiseKernel
<
T
,
DivScalarFunctor
<
T
>>
(
dev_ctx
,
ins
,
&
outs
,
func
);
}
template
<
typename
T
,
typename
Context
>
void
DivCsrScalarKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
float
scalar
,
SparseCsrTensor
*
out
)
{
EmptyLikeCsrKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
out
);
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
(
x
.
non_zero_elements
())};
std
::
vector
<
DenseTensor
*>
outs
=
{
out
->
mutable_non_zero_elements
()};
DivScalarFunctor
<
T
>
func
(
static_cast
<
T
>
(
scalar
));
funcs
::
ElementwiseKernel
<
T
,
DivScalarFunctor
<
T
>>
(
dev_ctx
,
ins
,
&
outs
,
func
);
}
}
// namespace sparse
}
// namespace phi
#define PD_REGISTER_SPARSE_UNARY_GPU_KERNEL(name, prefix) \
PD_REGISTER_KERNEL(name##_coo, \
GPU, \
ALL_LAYOUT, \
phi::sparse::prefix##CooKernel, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); \
} \
\
PD_REGISTER_KERNEL(name##_csr, \
GPU, \
ALL_LAYOUT, \
phi::sparse::prefix##CsrKernel, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); \
}
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
sin
,
Sin
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
tan
,
Tan
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
asin
,
Asin
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
atan
,
Atan
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
sinh
,
Sinh
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
tanh
,
Tanh
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
asinh
,
Asinh
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
atanh
,
Atanh
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
sqrt
,
Sqrt
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
square
,
Square
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
log1p
,
Log1p
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
relu
,
Relu
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
abs
,
Abs
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
pow
,
Pow
)
PD_REGISTER_SPARSE_UNARY_GPU_KERNEL
(
scale
,
Scale
)
PD_REGISTER_KERNEL
(
divide_coo_scalar
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
DivCooScalarKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
divide_csr_scalar
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
DivCsrScalarKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
PD_REGISTER_KERNEL
(
cast_coo
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CastCooKernel
,
float
,
double
,
int8_t
,
uint8_t
,
int16_t
,
int
,
int64_t
,
bool
)
{}
PD_REGISTER_KERNEL
(
cast_csr
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CastCsrKernel
,
float
,
double
,
int8_t
,
uint8_t
,
int16_t
,
int
,
int64_t
,
bool
)
{}
paddle/phi/kernels/sparse/impl/unary_grad_kernel_impl.h
0 → 100644
浏览文件 @
682acd22
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/abs_grad_kernel.h"
#include "paddle/phi/kernels/activation_grad_kernel.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
#include "paddle/phi/kernels/sparse/impl/unary_kernel_impl.h"
namespace
phi
{
namespace
sparse
{
#define DEFINE_SPARSE_UNARY_GRAD_KERNEL(prefix) \
template <typename T, typename Context> \
void prefix##CooGradKernel(const Context& dev_ctx, \
const SparseCooTensor& x_or_out, \
const SparseCooTensor& dout, \
SparseCooTensor* dx) { \
EmptyLikeCooKernel<T, Context>(dev_ctx, x_or_out, dx); \
phi::prefix##GradKernel<T, Context>(dev_ctx, \
x_or_out.non_zero_elements(), \
dout.non_zero_elements(), \
dx->mutable_non_zero_elements()); \
} \
\
template <typename T, typename Context> \
void prefix##CsrGradKernel(const Context& dev_ctx, \
const SparseCsrTensor& x_or_out, \
const SparseCsrTensor& dout, \
SparseCsrTensor* dx) { \
EmptyLikeCsrKernel<T, Context>(dev_ctx, x_or_out, dx); \
phi::prefix##GradKernel<T, Context>(dev_ctx, \
x_or_out.non_zero_elements(), \
dout.non_zero_elements(), \
dx->mutable_non_zero_elements()); \
}
#define DEFINE_SPARSE_UNARY_GRAD_KERNEL_WITH_ONE_ATTR(prefix, attr) \
template <typename T, typename Context> \
void prefix##CooGradKernel(const Context& dev_ctx, \
const SparseCooTensor& x_or_out, \
const SparseCooTensor& dout, \
float attr, \
SparseCooTensor* dx) { \
EmptyLikeCooKernel<T, Context>(dev_ctx, x_or_out, dx); \
phi::prefix##GradKernel<T, Context>(dev_ctx, \
x_or_out.non_zero_elements(), \
dout.non_zero_elements(), \
attr, \
dx->mutable_non_zero_elements()); \
} \
\
template <typename T, typename Context> \
void prefix##CsrGradKernel(const Context& dev_ctx, \
const SparseCsrTensor& x_or_out, \
const SparseCsrTensor& dout, \
float attr, \
SparseCsrTensor* dx) { \
EmptyLikeCsrKernel<T, Context>(dev_ctx, x_or_out, dx); \
phi::prefix##GradKernel<T, Context>(dev_ctx, \
x_or_out.non_zero_elements(), \
dout.non_zero_elements(), \
attr, \
dx->mutable_non_zero_elements()); \
}
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Sin
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Tan
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Asin
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Atan
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Sinh
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Tanh
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Asinh
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Atanh
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Sqrt
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Square
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Log1p
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Relu
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
Abs
)
DEFINE_SPARSE_UNARY_GRAD_KERNEL_WITH_ONE_ATTR
(
Pow
,
factor
)
template
<
typename
T
,
typename
Context
>
void
CastCooGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
SparseCooTensor
&
dout
,
DataType
value_dtype
,
SparseCooTensor
*
dx
)
{
EmptyLikeCooKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
dx
);
if
(
value_dtype
==
DataType
::
UNDEFINED
)
{
phi
::
Copy
(
dev_ctx
,
dout
.
non_zero_elements
(),
dev_ctx
.
GetPlace
(),
false
,
dx
->
mutable_non_zero_elements
());
}
else
{
phi
::
CastKernel
<
T
,
Context
>
(
dev_ctx
,
dout
.
non_zero_elements
(),
x
.
non_zero_elements
().
dtype
(),
dx
->
mutable_non_zero_elements
());
}
}
template
<
typename
T
,
typename
Context
>
void
CastCsrGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
const
SparseCsrTensor
&
dout
,
DataType
value_dtype
,
SparseCsrTensor
*
dx
)
{
EmptyLikeCsrKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
dx
);
if
(
value_dtype
==
DataType
::
UNDEFINED
)
{
phi
::
Copy
(
dev_ctx
,
dout
.
non_zero_elements
(),
dev_ctx
.
GetPlace
(),
false
,
dx
->
mutable_non_zero_elements
());
}
else
{
phi
::
CastKernel
<
T
,
Context
>
(
dev_ctx
,
dout
.
non_zero_elements
(),
x
.
non_zero_elements
().
dtype
(),
dx
->
mutable_non_zero_elements
());
}
}
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/impl/unary_kernel_impl.h
0 → 100644
浏览文件 @
682acd22
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/meta_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/abs_kernel.h"
#include "paddle/phi/kernels/activation_kernel.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/scale_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
#include "paddle/phi/kernels/trunc_kernel.h"
namespace
phi
{
namespace
sparse
{
#define DEFINE_SPARSE_UNARY_KERNEL(prefix) \
template <typename T, typename Context> \
void prefix##CooKernel(const Context& dev_ctx, \
const SparseCooTensor& x, \
SparseCooTensor* out) { \
EmptyLikeCooKernel<T, Context>(dev_ctx, x, out); \
phi::prefix##Kernel<T, Context>( \
dev_ctx, x.non_zero_elements(), out->mutable_non_zero_elements()); \
} \
\
template <typename T, typename Context> \
void prefix##CsrKernel(const Context& dev_ctx, \
const SparseCsrTensor& x, \
SparseCsrTensor* out) { \
EmptyLikeCsrKernel<T, Context>(dev_ctx, x, out); \
phi::prefix##Kernel<T, Context>( \
dev_ctx, x.non_zero_elements(), out->mutable_non_zero_elements()); \
}
#define DEFINE_SPARSE_UNARY_KERNEL_WITH_ONE_ATTR(prefix, attr) \
template <typename T, typename Context> \
void prefix##CooKernel(const Context& dev_ctx, \
const SparseCooTensor& x, \
float attr, \
SparseCooTensor* out) { \
EmptyLikeCooKernel<T, Context>(dev_ctx, x, out); \
phi::prefix##Kernel<T, Context>(dev_ctx, \
x.non_zero_elements(), \
attr, \
out->mutable_non_zero_elements()); \
} \
\
template <typename T, typename Context> \
void prefix##CsrKernel(const Context& dev_ctx, \
const SparseCsrTensor& x, \
float attr, \
SparseCsrTensor* out) { \
EmptyLikeCsrKernel<T, Context>(dev_ctx, x, out); \
phi::prefix##Kernel<T, Context>(dev_ctx, \
x.non_zero_elements(), \
attr, \
out->mutable_non_zero_elements()); \
}
DEFINE_SPARSE_UNARY_KERNEL
(
Sin
)
DEFINE_SPARSE_UNARY_KERNEL
(
Tan
)
DEFINE_SPARSE_UNARY_KERNEL
(
Asin
)
DEFINE_SPARSE_UNARY_KERNEL
(
Atan
)
DEFINE_SPARSE_UNARY_KERNEL
(
Sinh
)
DEFINE_SPARSE_UNARY_KERNEL
(
Tanh
)
DEFINE_SPARSE_UNARY_KERNEL
(
Asinh
)
DEFINE_SPARSE_UNARY_KERNEL
(
Atanh
)
DEFINE_SPARSE_UNARY_KERNEL
(
Sqrt
)
DEFINE_SPARSE_UNARY_KERNEL
(
Square
)
DEFINE_SPARSE_UNARY_KERNEL
(
Log1p
)
DEFINE_SPARSE_UNARY_KERNEL
(
Relu
)
DEFINE_SPARSE_UNARY_KERNEL
(
Abs
)
DEFINE_SPARSE_UNARY_KERNEL_WITH_ONE_ATTR
(
Pow
,
factor
)
template
<
typename
T
,
typename
Context
>
void
ScaleCooKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
float
scale
,
float
bias
,
bool
bias_after_scale
,
SparseCooTensor
*
out
)
{
EmptyLikeCooKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
out
);
phi
::
ScaleKernel
<
T
,
Context
>
(
dev_ctx
,
x
.
non_zero_elements
(),
scale
,
bias
,
bias_after_scale
,
out
->
mutable_non_zero_elements
());
}
template
<
typename
T
,
typename
Context
>
void
ScaleCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
float
scale
,
float
bias
,
bool
bias_after_scale
,
SparseCsrTensor
*
out
)
{
EmptyLikeCsrKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
out
);
phi
::
ScaleKernel
<
T
,
Context
>
(
dev_ctx
,
x
.
non_zero_elements
(),
scale
,
bias
,
bias_after_scale
,
out
->
mutable_non_zero_elements
());
}
template
<
typename
T
,
typename
Context
>
void
CastCooKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
DataType
index_dtype
,
DataType
value_dtype
,
SparseCooTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
const
DenseTensor
&
x_indices
=
x
.
non_zero_indices
();
const
DenseTensor
&
x_values
=
x
.
non_zero_elements
();
DenseTensor
*
out_indices
=
out
->
mutable_non_zero_indices
();
DenseTensor
*
out_values
=
out
->
mutable_non_zero_elements
();
if
(
index_dtype
==
DataType
::
UNDEFINED
)
{
phi
::
Copy
(
dev_ctx
,
x_indices
,
dev_ctx
.
GetPlace
(),
false
,
out_indices
);
}
else
{
phi
::
MetaTensor
meta
(
out_indices
);
meta
.
set_dims
(
x_indices
.
dims
());
meta
.
set_dtype
(
index_dtype
);
PD_VISIT_INTEGRAL_TYPES
(
x_indices
.
dtype
(),
"CastCooKernel"
,
[
&
]
{
phi
::
CastKernel
<
data_t
,
Context
>
(
dev_ctx
,
x_indices
,
index_dtype
,
out_indices
);
});
}
if
(
value_dtype
==
DataType
::
UNDEFINED
)
{
phi
::
Copy
(
dev_ctx
,
x_values
,
dev_ctx
.
GetPlace
(),
false
,
out_values
);
}
else
{
phi
::
MetaTensor
meta
(
out_values
);
meta
.
set_dims
(
x_values
.
dims
());
meta
.
set_dtype
(
value_dtype
);
phi
::
CastKernel
<
T
,
Context
>
(
dev_ctx
,
x_values
,
value_dtype
,
out_values
);
}
}
template
<
typename
T
,
typename
Context
>
void
CastCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
DataType
index_dtype
,
DataType
value_dtype
,
SparseCsrTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
const
DenseTensor
&
x_crows
=
x
.
non_zero_crows
();
const
DenseTensor
&
x_cols
=
x
.
non_zero_cols
();
const
DenseTensor
&
x_values
=
x
.
non_zero_elements
();
DenseTensor
*
out_crows
=
out
->
mutable_non_zero_crows
();
DenseTensor
*
out_cols
=
out
->
mutable_non_zero_cols
();
DenseTensor
*
out_values
=
out
->
mutable_non_zero_elements
();
if
(
index_dtype
==
DataType
::
UNDEFINED
)
{
phi
::
Copy
(
dev_ctx
,
x_crows
,
dev_ctx
.
GetPlace
(),
false
,
out_crows
);
phi
::
Copy
(
dev_ctx
,
x_cols
,
dev_ctx
.
GetPlace
(),
false
,
out_cols
);
}
else
{
phi
::
MetaTensor
crows_meta
(
out_crows
);
crows_meta
.
set_dims
(
x_crows
.
dims
());
crows_meta
.
set_dtype
(
index_dtype
);
PD_VISIT_INTEGRAL_TYPES
(
x_crows
.
dtype
(),
"CastCsrKernel"
,
[
&
]
{
phi
::
CastKernel
<
data_t
,
Context
>
(
dev_ctx
,
x_crows
,
index_dtype
,
out_crows
);
});
phi
::
MetaTensor
cols_meta
(
out_cols
);
cols_meta
.
set_dims
(
x_cols
.
dims
());
cols_meta
.
set_dtype
(
index_dtype
);
PD_VISIT_INTEGRAL_TYPES
(
x_cols
.
dtype
(),
"CastCsrKernel"
,
[
&
]
{
phi
::
CastKernel
<
data_t
,
Context
>
(
dev_ctx
,
x_cols
,
index_dtype
,
out_cols
);
});
}
if
(
value_dtype
==
DataType
::
UNDEFINED
)
{
phi
::
Copy
(
dev_ctx
,
x_values
,
dev_ctx
.
GetPlace
(),
false
,
out_values
);
}
else
{
phi
::
MetaTensor
meta
(
out_values
);
meta
.
set_dims
(
x_values
.
dims
());
meta
.
set_dtype
(
value_dtype
);
phi
::
CastKernel
<
T
,
Context
>
(
dev_ctx
,
x_values
,
value_dtype
,
out_values
);
}
}
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/unary_grad_kernel.cc
已删除
100644 → 0
浏览文件 @
51e2933d
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sparse/unary_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/activation_grad_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#define DEFINE_SPARSE_UNARY_GRAD_KERNEL(DenseKernelFunc) \
namespace phi { \
namespace sparse { \
\
template <typename T, typename Context> \
void SparseCoo##DenseKernelFunc(const Context& dev_ctx, \
const SparseCooTensor& x_or_out, \
const SparseCooTensor& out_grad, \
SparseCooTensor* x_grad) { \
DenseTensor non_zero_indices = \
phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_indices()); \
DenseTensor non_zero_elements = \
phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_elements()); \
phi::Copy(dev_ctx, \
x_or_out.non_zero_indices(), \
dev_ctx.GetPlace(), \
false, \
&non_zero_indices); \
phi::DenseKernelFunc<T, Context>(dev_ctx, \
x_or_out.non_zero_elements(), \
out_grad.non_zero_elements(), \
&non_zero_elements); \
x_grad->SetMember( \
non_zero_indices, non_zero_elements, x_or_out.dims(), true); \
} \
\
template <typename T, typename Context> \
void SparseCsr##DenseKernelFunc(const Context& dev_ctx, \
const SparseCsrTensor& x_or_out, \
const SparseCsrTensor& out_grad, \
SparseCsrTensor* out) { \
DenseTensor non_zero_crows = \
phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_crows()); \
DenseTensor non_zero_cols = \
phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_cols()); \
DenseTensor non_zero_elements = \
phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_elements()); \
phi::Copy(dev_ctx, \
x_or_out.non_zero_crows(), \
dev_ctx.GetPlace(), \
false, \
&non_zero_crows); \
phi::Copy(dev_ctx, \
x_or_out.non_zero_cols(), \
dev_ctx.GetPlace(), \
false, \
&non_zero_cols); \
phi::DenseKernelFunc<T, Context>(dev_ctx, \
x_or_out.non_zero_elements(), \
out_grad.non_zero_elements(), \
&non_zero_elements); \
out->SetMember( \
non_zero_crows, non_zero_cols, non_zero_elements, x_or_out.dims()); \
} \
} \
}
#define REGISTER_CPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
PD_REGISTER_KERNEL(sparse_coo_##kernel_name, \
CPU, \
ALL_LAYOUT, \
phi::sparse::SparseCoo##DenseKernelFunc, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); \
} \
PD_REGISTER_KERNEL(sparse_csr_##kernel_name, \
CPU, \
ALL_LAYOUT, \
phi::sparse::SparseCsr##DenseKernelFunc, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); \
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#define REGISTER_GPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
PD_REGISTER_KERNEL(sparse_coo_##kernel_name, \
GPU, \
ALL_LAYOUT, \
phi::sparse::SparseCoo##DenseKernelFunc, \
float, \
double, \
phi::dtype::float16) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); \
} \
\
PD_REGISTER_KERNEL(sparse_csr_##kernel_name, \
GPU, \
ALL_LAYOUT, \
phi::sparse::SparseCsr##DenseKernelFunc, \
float, \
double, \
phi::dtype::float16) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); \
}
#else
// This macro definition is empty when GPU is disabled
#define REGISTER_GPU_SPARSE_UNARY_KERNEL(sparse_kernel_name, DenseKernelFunc)
#endif
#define REGISTER_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
REGISTER_CPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
REGISTER_GPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc)
#define DEFINE_AND_REGISTER_SPARSE_UNARY_GRAD_KERNEL(kernel_name, \
DenseKernelFunc) \
DEFINE_SPARSE_UNARY_GRAD_KERNEL(DenseKernelFunc) \
REGISTER_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc)
// NOTE: the following code is to bypass the restriction of Paddle
// kernel registration mechanism. Do NOT refactor them unless you
// know what you are doing.
// If you want to implement any new kernel, please follow `sin_grad`,
// `tanh_grad` etc, do NOT follow the following `relu_grad`.
DEFINE_SPARSE_UNARY_GRAD_KERNEL
(
ReluGradKernel
)
PD_REGISTER_KERNEL
(
sparse_coo_relu_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SparseCooReluGradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
sparse_csr_relu_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SparseCsrReluGradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL
(
sparse_coo_relu_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SparseCooReluGradKernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
sparse_csr_relu_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SparseCsrReluGradKernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
#endif
DEFINE_AND_REGISTER_SPARSE_UNARY_GRAD_KERNEL
(
sin_grad
,
SinGradKernel
)
DEFINE_AND_REGISTER_SPARSE_UNARY_GRAD_KERNEL
(
sqrt_grad
,
SqrtGradKernel
)
DEFINE_AND_REGISTER_SPARSE_UNARY_GRAD_KERNEL
(
tanh_grad
,
TanhGradKernel
)
paddle/phi/kernels/sparse/unary_grad_kernel.h
浏览文件 @
682acd22
...
...
@@ -17,25 +17,65 @@
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#define DECLARE_SPARSE_UNARY_GRAD_KERNEL(name) \
template <typename T, typename Context> \
void SparseCoo##name##GradKernel(const Context& dev_ctx, \
const SparseCooTensor& x, \
const SparseCooTensor& out_grad, \
SparseCooTensor* x_grad); \
\
template <typename T, typename Context> \
void SparseCsr##name##GradKernel(const Context& dev_ctx, \
const SparseCsrTensor& x, \
const SparseCsrTensor& out_grad, \
SparseCsrTensor* x_grad);
namespace
phi
{
namespace
sparse
{
#define DECLARE_SPARSE_UNARY_GRAD_KERNEL(prefix) \
template <typename T, typename Context> \
void prefix##CooGradKernel(const Context& dev_ctx, \
const SparseCooTensor& x_or_out, \
const SparseCooTensor& dout, \
SparseCooTensor* dx); \
\
template <typename T, typename Context> \
void prefix##CsrGradKernel(const Context& dev_ctx, \
const SparseCsrTensor& x_or_out, \
const SparseCsrTensor& dout, \
SparseCsrTensor* dx);
#define DECLARE_SPARSE_UNARY_GRAD_KERNEL_WITH_ONE_ATTR(prefix, attr) \
template <typename T, typename Context> \
void prefix##CooGradKernel(const Context& dev_ctx, \
const SparseCooTensor& x_or_out, \
const SparseCooTensor& dout, \
float attr, \
SparseCooTensor* dx); \
\
template <typename T, typename Context> \
void prefix##CsrGradKernel(const Context& dev_ctx, \
const SparseCsrTensor& x_or_out, \
const SparseCsrTensor& dout, \
float attr, \
SparseCsrTensor* dx);
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Sin
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Tan
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Asin
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Atan
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Sinh
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Asinh
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Atanh
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Relu
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Tanh
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Square
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Sqrt
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Sin
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Log1p
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL
(
Abs
)
DECLARE_SPARSE_UNARY_GRAD_KERNEL_WITH_ONE_ATTR
(
Pow
,
factor
)
template
<
typename
T
,
typename
Context
>
void
CastCooGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
SparseCooTensor
&
dout
,
DataType
value_dtype
,
SparseCooTensor
*
dx
);
template
<
typename
T
,
typename
Context
>
void
CastCsrGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
const
SparseCsrTensor
&
dout
,
DataType
value_dtype
,
SparseCsrTensor
*
dx
);
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/unary_kernel.cc
已删除
100644 → 0
浏览文件 @
51e2933d
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sparse/unary_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/activation_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#define DEFINE_SPARSE_UNARY_KERNEL(DenseKernelFunc) \
namespace phi { \
namespace sparse { \
\
template <typename T, typename Context> \
void SparseCoo##DenseKernelFunc(const Context& dev_ctx, \
const SparseCooTensor& x, \
SparseCooTensor* out) { \
DenseTensor non_zero_indices = \
phi::EmptyLike<T, Context>(dev_ctx, x.non_zero_indices()); \
DenseTensor non_zero_elements = \
phi::EmptyLike<T, Context>(dev_ctx, x.non_zero_elements()); \
phi::Copy(dev_ctx, \
x.non_zero_indices(), \
dev_ctx.GetPlace(), \
false, \
&non_zero_indices); \
phi::DenseKernelFunc<T, Context>( \
dev_ctx, x.non_zero_elements(), &non_zero_elements); \
out->SetMember(non_zero_indices, non_zero_elements, x.dims(), true); \
} \
\
template <typename T, typename Context> \
void SparseCsr##DenseKernelFunc(const Context& dev_ctx, \
const SparseCsrTensor& x, \
SparseCsrTensor* out) { \
DenseTensor non_zero_crows = \
phi::EmptyLike<T, Context>(dev_ctx, x.non_zero_crows()); \
DenseTensor non_zero_cols = \
phi::EmptyLike<T, Context>(dev_ctx, x.non_zero_cols()); \
DenseTensor non_zero_elements = \
phi::EmptyLike<T, Context>(dev_ctx, x.non_zero_elements()); \
phi::Copy(dev_ctx, \
x.non_zero_crows(), \
dev_ctx.GetPlace(), \
false, \
&non_zero_crows); \
phi::Copy(dev_ctx, \
x.non_zero_cols(), \
dev_ctx.GetPlace(), \
false, \
&non_zero_cols); \
phi::DenseKernelFunc<T, Context>( \
dev_ctx, x.non_zero_elements(), &non_zero_elements); \
out->SetMember( \
non_zero_crows, non_zero_cols, non_zero_elements, x.dims()); \
} \
} \
}
#define REGISTER_CPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
PD_REGISTER_KERNEL(sparse_coo_##kernel_name, \
CPU, \
ALL_LAYOUT, \
phi::sparse::SparseCoo##DenseKernelFunc, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); \
} \
PD_REGISTER_KERNEL(sparse_csr_##kernel_name, \
CPU, \
ALL_LAYOUT, \
phi::sparse::SparseCsr##DenseKernelFunc, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); \
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#define REGISTER_GPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
PD_REGISTER_KERNEL(sparse_coo_##kernel_name, \
GPU, \
ALL_LAYOUT, \
phi::sparse::SparseCoo##DenseKernelFunc, \
float, \
double, \
phi::dtype::float16) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); \
} \
\
PD_REGISTER_KERNEL(sparse_csr_##kernel_name, \
GPU, \
ALL_LAYOUT, \
phi::sparse::SparseCsr##DenseKernelFunc, \
float, \
double, \
phi::dtype::float16) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); \
}
#else
// This macro definition is empty when GPU is disabled
#define REGISTER_GPU_SPARSE_UNARY_KERNEL(sparse_kernel_name, DenseKernelFunc)
#endif
#define REGISTER_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
REGISTER_CPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
REGISTER_GPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc)
#define DEFINE_AND_REGISTER_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
DEFINE_SPARSE_UNARY_KERNEL(DenseKernelFunc) \
REGISTER_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc)
// NOTE: the following code is to bypass the restriction of Paddle
// kernel registration mechanism. Do NOT refactor them unless you
// know what you are doing.
// If you want to implement any new kernel, please follow `sin`,
// `tanh` etc, do NOT follow `sqrt`.
DEFINE_SPARSE_UNARY_KERNEL
(
SqrtKernel
)
PD_REGISTER_KERNEL
(
sparse_coo_sqrt
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SparseCooSqrtKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
sparse_csr_sqrt
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SparseCsrSqrtKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL
(
sparse_coo_sqrt
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SparseCooSqrtKernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
sparse_csr_sqrt
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
SparseCsrSqrtKernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
#endif
DEFINE_AND_REGISTER_SPARSE_UNARY_KERNEL
(
sin
,
SinKernel
)
DEFINE_AND_REGISTER_SPARSE_UNARY_KERNEL
(
tanh
,
TanhKernel
)
DEFINE_AND_REGISTER_SPARSE_UNARY_KERNEL
(
relu
,
ReluKernel
)
paddle/phi/kernels/sparse/unary_kernel.h
浏览文件 @
682acd22
...
...
@@ -14,35 +14,104 @@
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/kernels/activation_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#define DECLARE_SPARSE_UNARY_KERNEL(name) \
namespace
phi
{
namespace
sparse
{
#define DECLARE_SPARSE_UNARY_KERNEL(prefix) \
template <typename T, typename Context> \
void
SparseCoo##name##Kernel(
\
void
prefix##CooKernel(
\
const Context& dev_ctx, const SparseCooTensor& x, SparseCooTensor* out); \
\
template <typename T, typename Context> \
void
SparseCsr##name##Kernel(
\
void
prefix##CsrKernel(
\
const Context& dev_ctx, const SparseCsrTensor& x, SparseCsrTensor* out);
namespace
phi
{
namespace
sparse
{
#define DECLARE_SPARSE_UNARY_KERNEL_WITH_ONE_ATTR(prefix, attr) \
template <typename T, typename Context> \
void prefix##CooKernel(const Context& dev_ctx, \
const SparseCooTensor& x, \
float attr, \
SparseCooTensor* out); \
\
template <typename T, typename Context> \
void prefix##CsrKernel(const Context& dev_ctx, \
const SparseCsrTensor& x, \
float attr, \
SparseCsrTensor* out);
DECLARE_SPARSE_UNARY_KERNEL
(
Sin
)
DECLARE_SPARSE_UNARY_KERNEL
(
Tan
)
DECLARE_SPARSE_UNARY_KERNEL
(
Asin
)
DECLARE_SPARSE_UNARY_KERNEL
(
Atan
)
DECLARE_SPARSE_UNARY_KERNEL
(
Sinh
)
DECLARE_SPARSE_UNARY_KERNEL
(
Asinh
)
DECLARE_SPARSE_UNARY_KERNEL
(
Atanh
)
DECLARE_SPARSE_UNARY_KERNEL
(
Relu
)
DECLARE_SPARSE_UNARY_KERNEL
(
Tanh
)
DECLARE_SPARSE_UNARY_KERNEL
(
Square
)
DECLARE_SPARSE_UNARY_KERNEL
(
Sqrt
)
DECLARE_SPARSE_UNARY_KERNEL
(
Sin
)
DECLARE_SPARSE_UNARY_KERNEL
(
Log1p
)
DECLARE_SPARSE_UNARY_KERNEL
(
Abs
)
DECLARE_SPARSE_UNARY_KERNEL_WITH_ONE_ATTR
(
Pow
,
factor
)
template
<
typename
T
,
typename
Context
>
void
ScaleCooKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
float
scale
,
float
bias
,
bool
bias_after_scale
,
SparseCooTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
ScaleCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
float
scale
,
float
bias
,
bool
bias_after_scale
,
SparseCsrTensor
*
out
);
template
<
typename
T
,
typename
Context
>
SparseCooTensor
SparseRelu
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
)
{
DenseTensor
indices
,
values
;
SparseCooTensor
coo
(
indices
,
values
,
x
.
dims
());
SparseCooReluKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
&
coo
);
void
DivCooScalarKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
float
scalar
,
SparseCooTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
DivCsrScalarKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
float
scalar
,
SparseCsrTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
CastCooKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
DataType
index_dtype
,
DataType
value_dtype
,
SparseCooTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
CastCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
x
,
DataType
index_dtype
,
DataType
value_dtype
,
SparseCsrTensor
*
out
);
template
<
typename
T
,
typename
Context
>
SparseCooTensor
ReluCoo
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
)
{
SparseCooTensor
coo
;
ReluCooKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
&
coo
);
return
coo
;
}
template
<
typename
T
,
typename
Context
>
SparseCooTensor
ReluCsr
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
)
{
SparseCooTensor
csr
;
ReluCsrKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
&
csr
);
return
csr
;
}
}
// namespace sparse
}
// namespace phi
paddle/phi/tests/kernels/test_sparse_activation_dev_api.cc
浏览文件 @
682acd22
...
...
@@ -49,7 +49,7 @@ TEST(DEV_API, sparse_relu) {
memcpy
(
dense_x
.
data
<
float
>
(),
data
.
data
(),
data
.
size
()
*
sizeof
(
float
));
auto
sparse_coo
=
sparse
::
DenseToSparseCoo
<
float
>
(
dev_ctx_cpu
,
dense_x
,
2
);
auto
sparse_out
=
sparse
::
SparseRelu
<
float
>
(
dev_ctx_cpu
,
sparse_coo
);
auto
sparse_out
=
sparse
::
ReluCoo
<
float
>
(
dev_ctx_cpu
,
sparse_coo
);
DenseTensor
dense_out
=
phi
::
EmptyLike
<
float
>
(
dev_ctx_cpu
,
sparse_out
.
non_zero_elements
());
ReluKernel
<
float
>
(
dev_ctx_cpu
,
sparse_coo
.
non_zero_elements
(),
&
dense_out
);
...
...
@@ -69,7 +69,7 @@ TEST(DEV_API, sparse_relu) {
SparseCooTensor
sparse_out_grad
(
sparse_coo
.
non_zero_indices
(),
dense_out
,
{
3
,
4
});
sparse
::
SparseCooRelu
GradKernel
<
float
>
(
sparse
::
ReluCoo
GradKernel
<
float
>
(
dev_ctx_cpu
,
sparse_coo
,
sparse_out_grad
,
&
sparse_grad_x
);
cmp
=
memcmp
(
dense_grad_x
.
data
<
float
>
(),
...
...
python/paddle/fluid/tests/unittests/test_sparse_elementwise_op.py
浏览文件 @
682acd22
...
...
@@ -125,16 +125,14 @@ class TestSparseElementWiseAPI(unittest.TestCase):
def
test_support_dtypes_csr
(
self
):
paddle
.
device
.
set_device
(
'cpu'
)
if
paddle
.
device
.
get_device
()
==
"cpu"
:
with
_test_eager_guard
():
for
op
in
op_list
:
self
.
func_test_csr
(
op
)
for
op
in
op_list
:
self
.
func_test_csr
(
op
)
def
test_support_dtypes_coo
(
self
):
paddle
.
device
.
set_device
(
'cpu'
)
if
paddle
.
device
.
get_device
()
==
"cpu"
:
with
_test_eager_guard
():
for
op
in
op_list
:
self
.
func_test_coo
(
op
)
for
op
in
op_list
:
self
.
func_test_coo
(
op
)
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_sparse_model.py
浏览文件 @
682acd22
...
...
@@ -62,3 +62,7 @@ class TestGradientAdd(unittest.TestCase):
sparse_loss
.
backward
()
assert
np
.
allclose
(
x
.
grad
.
numpy
(),
sparse_x
.
grad
.
to_dense
().
numpy
())
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_sparse_unary_op.py
浏览文件 @
682acd22
...
...
@@ -12,137 +12,142 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
from
typing
import
Union
,
Callable
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.framework
import
_test_eager_guard
from
paddle
import
_C_ops
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
class
TestSparseUnary
(
unittest
.
TestCase
):
def
assert_raises_on_dense_tensor
(
self
,
sparse_func
):
with
_test_eager_guard
():
dense_x
=
paddle
.
ones
((
2
,
3
))
with
self
.
assertRaises
(
NotImplementedError
):
sparse_func
(
dense_x
)
def
compare_with_dense
(
self
,
x
,
to_sparse
:
Callable
[[
paddle
.
Tensor
],
paddle
.
Tensor
],
dense_func
:
Callable
[[
paddle
.
Tensor
],
paddle
.
Tensor
],
sparse_func
:
Callable
[[
paddle
.
Tensor
],
paddle
.
Tensor
],
test_gradient
:
bool
,
):
def
tensor_allclose
(
dense_tensor
:
paddle
.
Tensor
,
sparse_tensor
:
paddle
.
Tensor
):
dense_numpy
=
dense_tensor
.
numpy
()
mask
=
~
np
.
isnan
(
dense_numpy
)
return
np
.
allclose
(
dense_numpy
[
mask
],
sparse_tensor
.
to_dense
().
numpy
()[
mask
])
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
True
})
with
_test_eager_guard
():
dense_x
=
paddle
.
to_tensor
(
x
,
dtype
=
"float32"
,
stop_gradient
=
not
test_gradient
)
sparse_x
=
to_sparse
(
dense_x
)
sparse_out
=
sparse_func
(
sparse_x
)
dense_x
=
paddle
.
to_tensor
(
x
,
dtype
=
"float32"
,
stop_gradient
=
not
test_gradient
)
def
to_sparse
(
self
,
x
,
format
):
if
format
==
'coo'
:
return
x
.
detach
().
to_sparse_coo
(
sparse_dim
=
x
.
ndim
)
elif
format
==
'csr'
:
return
x
.
detach
().
to_sparse_csr
()
def
check_result
(
self
,
dense_func
,
sparse_func
,
format
,
*
args
):
origin_x
=
paddle
.
rand
([
8
,
16
,
32
],
dtype
=
'float32'
)
mask
=
paddle
.
randint
(
0
,
2
,
[
8
,
16
,
32
]).
astype
(
'float32'
)
### check sparse coo with dense ###
dense_x
=
origin_x
*
mask
sp_x
=
self
.
to_sparse
(
dense_x
,
format
)
sp_x
.
stop_gradient
=
False
if
len
(
args
)
==
0
:
sp_out
=
sparse_func
(
sp_x
)
elif
len
(
args
)
==
1
:
sp_out
=
sparse_func
(
sp_x
,
args
[
0
])
elif
len
(
args
)
==
2
:
sp_out
=
sparse_func
(
sp_x
,
args
[
0
],
args
[
1
])
sp_out
.
backward
()
dense_x
.
stop_gradient
=
False
if
len
(
args
)
==
0
:
dense_out
=
dense_func
(
dense_x
)
elif
len
(
args
)
==
1
:
dense_out
=
dense_func
(
dense_x
,
args
[
0
])
elif
len
(
args
)
==
2
:
if
dense_func
==
paddle
.
cast
:
dense_out
=
dense_func
(
dense_x
,
args
[
1
])
int_dtype
=
convert_np_dtype_to_dtype_
(
args
[
0
])
if
sp_out
.
is_sparse_csr
():
self
.
assertEqual
(
sp_out
.
crows
().
dtype
,
int_dtype
)
self
.
assertEqual
(
sp_out
.
cols
().
dtype
,
int_dtype
)
elif
sp_out
.
is_sparse_coo
():
self
.
assertEqual
(
sp_out
.
indices
().
dtype
,
int_dtype
)
else
:
dense_out
=
dense_func
(
dense_x
,
args
[
0
],
args
[
1
])
dense_out
.
backward
()
# compare forward
self
.
assertTrue
(
np
.
allclose
(
sp_out
.
to_dense
().
numpy
(),
dense_out
.
numpy
()))
# compare backward
if
dense_func
==
paddle
.
sqrt
:
expect_grad
=
np
.
nan_to_num
(
dense_x
.
grad
.
numpy
(),
0.
,
0.
,
0.
)
else
:
expect_grad
=
(
dense_x
.
grad
*
mask
).
numpy
()
self
.
assertTrue
(
np
.
allclose
(
sp_x
.
grad
.
to_dense
().
numpy
(),
expect_grad
))
def
compare_with_dense
(
self
,
dense_func
,
sparse_func
):
self
.
check_result
(
dense_func
,
sparse_func
,
'coo'
)
self
.
check_result
(
dense_func
,
sparse_func
,
'csr'
)
def
compare_with_dense_one_attr
(
self
,
dense_func
,
sparse_func
,
attr1
):
self
.
check_result
(
dense_func
,
sparse_func
,
'coo'
,
attr1
)
self
.
check_result
(
dense_func
,
sparse_func
,
'csr'
,
attr1
)
def
compare_with_dense_two_attr
(
self
,
dense_func
,
sparse_func
,
attr1
,
attr2
):
self
.
check_result
(
dense_func
,
sparse_func
,
'coo'
,
attr1
,
attr2
)
self
.
check_result
(
dense_func
,
sparse_func
,
'csr'
,
attr1
,
attr2
)
assert
tensor_allclose
(
dense_out
,
sparse_out
)
def
test_sparse_sin
(
self
):
self
.
compare_with_dense
(
paddle
.
sin
,
paddle
.
incubate
.
sparse
.
sin
)
if
test_gradient
:
dense_out
.
backward
(
dense_out
)
sparse_out
.
backward
(
sparse_out
)
assert
tensor_allclose
(
dense_x
.
grad
,
sparse_x
.
grad
)
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
False
})
def
test_sparse_tan
(
self
):
self
.
compare_with_dense
(
paddle
.
tan
,
paddle
.
incubate
.
sparse
.
tan
)
def
test_sparse_relu
(
self
):
x
=
[[
0
,
-
1
,
0
,
2
],
[
0
,
0
,
-
3
,
0
],
[
4
,
5
,
0
,
0
]]
sparse_dim
=
2
self
.
compare_with_dense
(
x
,
lambda
x
:
x
.
to_sparse_coo
(
sparse_dim
),
paddle
.
nn
.
ReLU
(),
paddle
.
incubate
.
sparse
.
nn
.
ReLU
(),
True
,
)
self
.
compare_with_dense
(
x
,
lambda
x
:
x
.
to_sparse_csr
(),
paddle
.
nn
.
ReLU
(),
paddle
.
incubate
.
sparse
.
nn
.
ReLU
(),
False
,
)
self
.
assert_raises_on_dense_tensor
(
paddle
.
incubate
.
sparse
.
nn
.
ReLU
())
def
test_sparse_asin
(
self
):
self
.
compare_with_dense
(
paddle
.
asin
,
paddle
.
incubate
.
sparse
.
asin
)
def
test_sparse_sqrt
(
self
):
x
=
[[
0
,
16
,
0
,
0
],
[
0
,
0
,
0
,
0
],
[
0
,
4
,
2
,
0
]]
sparse_dim
=
2
self
.
compare_with_dense
(
x
,
lambda
x
:
x
.
to_sparse_coo
(
sparse_dim
),
paddle
.
sqrt
,
paddle
.
incubate
.
sparse
.
sqrt
,
True
,
)
self
.
compare_with_dense
(
x
,
lambda
x
:
x
.
to_sparse_csr
(),
paddle
.
sqrt
,
paddle
.
incubate
.
sparse
.
sqrt
,
False
,
)
self
.
assert_raises_on_dense_tensor
(
paddle
.
incubate
.
sparse
.
sqrt
)
def
test_sparse_atan
(
self
):
self
.
compare_with_dense
(
paddle
.
atan
,
paddle
.
incubate
.
sparse
.
atan
)
def
test_sparse_sin
(
self
):
x
=
[[
0
,
16
,
0
,
0
],
[
0
,
0
,
0
,
0
],
[
0
,
4
,
2
,
0
]]
sparse_dim
=
2
self
.
compare_with_dense
(
x
,
lambda
x
:
x
.
to_sparse_coo
(
sparse_dim
),
paddle
.
sin
,
paddle
.
incubate
.
sparse
.
sin
,
True
,
)
self
.
compare_with_dense
(
x
,
lambda
x
:
x
.
to_sparse_csr
(),
paddle
.
sin
,
paddle
.
incubate
.
sparse
.
sin
,
False
,
)
self
.
assert_raises_on_dense_tensor
(
paddle
.
incubate
.
sparse
.
sin
)
def
test_sparse_sinh
(
self
):
self
.
compare_with_dense
(
paddle
.
sinh
,
paddle
.
incubate
.
sparse
.
sinh
)
def
test_sparse_tanh
(
self
):
x
=
[[
0
,
16
,
0
,
0
],
[
0
,
0
,
0
,
0
],
[
0
,
-
4
,
2
,
0
]]
sparse_dim
=
2
self
.
compare_with_dense
(
x
,
lambda
x
:
x
.
to_sparse_coo
(
sparse_dim
),
paddle
.
tanh
,
paddle
.
incubate
.
sparse
.
tanh
,
True
,
)
self
.
compare_with_dense
(
x
,
lambda
x
:
x
.
to_sparse_csr
(),
paddle
.
tanh
,
paddle
.
incubate
.
sparse
.
tanh
,
False
,
)
self
.
assert_raises_on_dense_tensor
(
paddle
.
incubate
.
sparse
.
tanh
)
self
.
compare_with_dense
(
paddle
.
tanh
,
paddle
.
incubate
.
sparse
.
tanh
)
def
test_sparse_asinh
(
self
):
self
.
compare_with_dense
(
paddle
.
asinh
,
paddle
.
incubate
.
sparse
.
asinh
)
def
test_sparse_atanh
(
self
):
self
.
compare_with_dense
(
paddle
.
atanh
,
paddle
.
incubate
.
sparse
.
atanh
)
def
test_sparse_sqrt
(
self
):
self
.
compare_with_dense
(
paddle
.
sqrt
,
paddle
.
incubate
.
sparse
.
sqrt
)
def
test_sparse_square
(
self
):
self
.
compare_with_dense
(
paddle
.
square
,
paddle
.
incubate
.
sparse
.
square
)
def
test_sparse_log1p
(
self
):
self
.
compare_with_dense
(
paddle
.
log1p
,
paddle
.
incubate
.
sparse
.
log1p
)
def
test_sparse_relu
(
self
):
self
.
compare_with_dense
(
paddle
.
nn
.
ReLU
(),
paddle
.
incubate
.
sparse
.
nn
.
ReLU
())
def
test_sparse_abs
(
self
):
self
.
compare_with_dense
(
paddle
.
abs
,
paddle
.
incubate
.
sparse
.
abs
)
def
test_sparse_neg
(
self
):
self
.
compare_with_dense
(
paddle
.
neg
,
paddle
.
incubate
.
sparse
.
neg
)
def
test_sparse_pow
(
self
):
self
.
compare_with_dense_one_attr
(
paddle
.
pow
,
paddle
.
incubate
.
sparse
.
pow
,
3
)
def
test_sparse_mul_scalar
(
self
):
self
.
compare_with_dense_one_attr
(
paddle
.
Tensor
.
__mul__
,
paddle
.
incubate
.
sparse
.
multiply
,
3
)
def
test_sparse_div_scalar
(
self
):
self
.
compare_with_dense_one_attr
(
paddle
.
Tensor
.
__div__
,
paddle
.
incubate
.
sparse
.
divide
,
2
)
def
test_sparse_cast
(
self
):
self
.
compare_with_dense_two_attr
(
paddle
.
cast
,
paddle
.
incubate
.
sparse
.
cast
,
'int16'
,
'float32'
)
self
.
compare_with_dense_two_attr
(
paddle
.
cast
,
paddle
.
incubate
.
sparse
.
cast
,
'int32'
,
'float64'
)
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_sparse_utils_op.py
浏览文件 @
682acd22
...
...
@@ -38,7 +38,6 @@ class TestSparseCreate(unittest.TestCase):
dense_shape
,
stop_gradient
=
False
)
# test the to_string.py
print
(
coo
)
assert
np
.
array_equal
(
indices
,
coo
.
indices
().
numpy
())
assert
np
.
array_equal
(
values
,
coo
.
values
().
numpy
())
...
...
@@ -49,6 +48,7 @@ class TestSparseCreate(unittest.TestCase):
dense_shape
=
[
3
,
3
]
coo
=
paddle
.
incubate
.
sparse
.
sparse_coo_tensor
(
indices
,
values
,
dense_shape
)
assert
np
.
array_equal
(
3
,
coo
.
nnz
())
assert
np
.
array_equal
(
indices
,
coo
.
indices
().
numpy
())
assert
np
.
array_equal
(
values
,
coo
.
values
().
numpy
())
...
...
@@ -78,7 +78,7 @@ class TestSparseCreate(unittest.TestCase):
csr
=
paddle
.
incubate
.
sparse
.
sparse_csr_tensor
(
crows
,
cols
,
values
,
dense_shape
)
# test the to_string.py
print
(
csr
)
assert
np
.
array_equal
(
5
,
csr
.
nnz
()
)
assert
np
.
array_equal
(
crows
,
csr
.
crows
().
numpy
())
assert
np
.
array_equal
(
cols
,
csr
.
cols
().
numpy
())
assert
np
.
array_equal
(
values
,
csr
.
values
().
numpy
())
...
...
python/paddle/incubate/sparse/__init__.py
浏览文件 @
682acd22
...
...
@@ -15,27 +15,50 @@
from
.creation
import
sparse_coo_tensor
from
.creation
import
sparse_csr_tensor
from
.unary
import
sqrt
from
.unary
import
sin
from
.unary
import
tan
from
.unary
import
asin
from
.unary
import
atan
from
.unary
import
sinh
from
.unary
import
tanh
from
.unary
import
asinh
from
.unary
import
atanh
from
.unary
import
sqrt
from
.unary
import
square
from
.unary
import
log1p
from
.unary
import
abs
from
.unary
import
pow
from
.unary
import
cast
from
.unary
import
neg
from
.binary
import
mv
from
.binary
import
matmul
from
.binary
import
masked_matmul
from
.math
import
add
from
.math
import
divide
from
.math
import
multiply
from
.math
import
subtract
from
.binary
import
add
from
.binary
import
divide
from
.binary
import
multiply
from
.binary
import
subtract
from
.
import
nn
__all__
=
[
'sparse_coo_tensor'
,
'sparse_csr_tensor'
,
'sqrt'
,
'sin'
,
'tan'
,
'asin'
,
'atan'
,
'sinh'
,
'tanh'
,
'asinh'
,
'atanh'
,
'sqrt'
,
'square'
,
'log1p'
,
'abs'
,
'pow'
,
'cast'
,
'neg'
,
'mv'
,
'matmul'
,
'masked_matmul'
,
...
...
python/paddle/incubate/sparse/binary.py
浏览文件 @
682acd22
...
...
@@ -13,10 +13,19 @@
# limitations under the License.
from
paddle
import
_C_ops
from
paddle.fluid.framework
import
dygraph_only
from
paddle.fluid.framework
import
dygraph_only
,
core
__all__
=
[]
_int_dtype_
=
[
core
.
VarDesc
.
VarType
.
UINT8
,
core
.
VarDesc
.
VarType
.
INT8
,
core
.
VarDesc
.
VarType
.
INT16
,
core
.
VarDesc
.
VarType
.
INT32
,
core
.
VarDesc
.
VarType
.
INT64
,
core
.
VarDesc
.
VarType
.
BOOL
,
]
@
dygraph_only
def
matmul
(
x
,
y
,
name
=
None
):
...
...
@@ -197,3 +206,191 @@ def mv(x, vec, name=None):
"""
return
_C_ops
.
final_state_sparse_mv
(
x
,
vec
)
def
add
(
x
,
y
,
name
=
None
):
"""
Add two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
The equation is:
.. math::
out = x + y
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: the result tensor.
Examples:
.. code-block:: python
import paddle
from paddle.fluid.framework import _test_eager_guard
paddle.device.set_device("cpu")
with _test_eager_guard():
x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
sparse_x = x.to_sparse_csr()
sparse_y = y.to_sparse_csr()
sparse_z = paddle.incubate.sparse.add(sparse_x, sparse_y)
print(sparse_z.to_dense())
# [[ 0., -1., 0., 0.],
# [ 0., 2., -6., 0.],
# [ 6., 8., 4., 8.]]
"""
if
y
.
dtype
!=
x
.
dtype
:
y
=
_C_ops
.
final_state_sparse_cast
(
y
,
None
,
x
.
dtype
)
return
_C_ops
.
final_state_sparse_add
(
x
,
y
)
@
dygraph_only
def
subtract
(
x
,
y
,
name
=
None
):
"""
Subtract two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
The equation is:
.. math::
out = x - y
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: the result tensor.
Examples:
.. code-block:: python
import paddle
from paddle.fluid.framework import _test_eager_guard
paddle.device.set_device("cpu")
with _test_eager_guard():
x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
sparse_x = x.to_sparse_csr()
sparse_y = y.to_sparse_csr()
sparse_z = paddle.incubate.sparse.subtract(sparse_x, sparse_y)
print(sparse_z.to_dense())
# [[ 0., -1., 0., 4.],
# [ 0., -2., 0., 0.],
# [ 2., 2., -4., -8.]]
"""
if
y
.
dtype
!=
x
.
dtype
:
y
=
_C_ops
.
final_state_sparse_cast
(
y
,
None
,
x
.
dtype
)
return
_C_ops
.
final_state_sparse_subtract
(
x
,
y
)
@
dygraph_only
def
multiply
(
x
,
y
,
name
=
None
):
"""
Multiply two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
The equation is:
.. math::
out = x * y
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: the result tensor.
Examples:
.. code-block:: python
import paddle
from paddle.fluid.framework import _test_eager_guard
paddle.device.set_device("cpu")
with _test_eager_guard():
x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
sparse_x = x.to_sparse_csr()
sparse_y = y.to_sparse_csr()
sparse_z = paddle.incubate.sparse.multiply(sparse_x, sparse_y)
print(sparse_z.to_dense())
# [[ 0., 0., 0., -4.],
# [ 0., 0., 9., 0.],
# [ 8., 15., 0., 0.]]
"""
if
isinstance
(
y
,
(
int
,
float
)):
return
_C_ops
.
final_state_sparse_scale
(
x
,
float
(
y
),
0.0
,
True
)
else
:
if
y
.
dtype
!=
x
.
dtype
:
y
=
_C_ops
.
final_state_sparse_cast
(
y
,
None
,
x
.
dtype
)
return
_C_ops
.
final_state_sparse_multiply
(
x
,
y
)
@
dygraph_only
def
divide
(
x
,
y
,
name
=
None
):
"""
Divide two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
The equation is:
.. math::
out = x / y
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: the result tensor.
Examples:
.. code-block:: python
import paddle
from paddle.fluid.framework import _test_eager_guard
paddle.device.set_device("cpu")
with _test_eager_guard():
x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
sparse_x = x.to_sparse_csr()
sparse_y = y.to_sparse_csr()
sparse_z = paddle.incubate.sparse.divide(sparse_x, sparse_y)
print(sparse_z.to_dense())
# [[ nan , -inf. , nan , -1. ],
# [ nan , 0. , 1. , nan ],
# [ 2. , 1.66666663, 0. , 0. ]]
"""
if
x
.
dtype
in
_int_dtype_
:
x
=
_C_ops
.
final_state_sparse_cast
(
x
,
None
,
core
.
VarDesc
.
VarType
.
FP32
)
if
isinstance
(
y
,
(
int
,
float
)):
return
_C_ops
.
final_state_sparse_divide_scalar
(
x
,
float
(
y
))
else
:
if
y
.
dtype
!=
x
.
dtype
:
y
=
_C_ops
.
final_state_sparse_cast
(
y
,
None
,
x
.
dtype
)
return
_C_ops
.
final_state_sparse_divide
(
x
,
y
)
python/paddle/incubate/sparse/math.py
已删除
100644 → 0
浏览文件 @
51e2933d
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
sparse math functions
"""
from
__future__
import
print_function
from
paddle
import
_C_ops
,
in_dynamic_mode
,
device
,
int32
,
int64
from
paddle.tensor
import
cast
from
paddle.incubate.sparse
import
sparse_csr_tensor
def
_cast_coo
(
x
,
dtype
,
name
=
None
):
indices
=
x
.
indices
()
values
=
cast
(
x
.
values
(),
dtype
)
return
_C_ops
.
final_state_sparse_create_sparse_coo_tensor
(
values
,
indices
,
x
.
shape
)
def
_cast_csr
(
x
,
dtype
,
name
=
None
):
crows
=
x
.
crows
()
cols
=
x
.
cols
()
values
=
cast
(
x
.
values
(),
dtype
)
return
sparse_csr_tensor
(
crows
,
cols
,
values
,
x
.
shape
)
def
_cast
(
x
,
dtype
,
name
=
None
):
if
x
.
is_sparse_coo
():
return
_cast_coo
(
x
,
dtype
,
name
)
return
_cast_csr
(
x
,
dtype
,
name
)
def
add
(
x
,
y
,
name
=
None
):
"""
Add two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
The equation is:
.. math::
out = x + y
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: the result tensor.
Examples:
.. code-block:: python
import paddle
from paddle.fluid.framework import _test_eager_guard
paddle.device.set_device("cpu")
with _test_eager_guard():
x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
sparse_x = x.to_sparse_csr()
sparse_y = y.to_sparse_csr()
sparse_z = paddle.incubate.sparse.add(sparse_x, sparse_y)
print(sparse_z.to_dense())
# [[ 0., -1., 0., 0.],
# [ 0., 2., -6., 0.],
# [ 6., 8., 4., 8.]]
"""
assert
device
.
get_device
(
)
==
"cpu"
,
"Currently, Sparse add only support CPU device."
assert
in_dynamic_mode
(),
"Currently, Sparse API only support dynamic mode"
assert
x
.
is_sparse_csr
()
==
y
.
is_sparse_csr
(
),
f
"Expect sparse tensor type to be same"
if
x
.
is_sparse_coo
()
or
x
.
is_sparse_csr
():
return
_C_ops
.
final_state_sparse_add
(
x
,
y
)
else
:
raise
ValueError
(
"Currently, sparse.add only support the input of SparseCooTensor or SparseCsrTensor"
)
def
subtract
(
x
,
y
,
name
=
None
):
"""
Subtract two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
The equation is:
.. math::
out = x - y
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: the result tensor.
Examples:
.. code-block:: python
import paddle
from paddle.fluid.framework import _test_eager_guard
paddle.device.set_device("cpu")
with _test_eager_guard():
x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
sparse_x = x.to_sparse_csr()
sparse_y = y.to_sparse_csr()
sparse_z = paddle.incubate.sparse.subtract(sparse_x, sparse_y)
print(sparse_z.to_dense())
# [[ 0., -1., 0., 4.],
# [ 0., -2., 0., 0.],
# [ 2., 2., -4., -8.]]
"""
assert
device
.
get_device
(
)
==
"cpu"
,
"Currently, Sparse subtract only support CPU device."
assert
in_dynamic_mode
(),
"Currently, Sparse API only support dynamic mode"
assert
x
.
is_sparse_csr
()
==
y
.
is_sparse_csr
(
),
f
"Expect sparse tensor type to be same"
if
x
.
is_sparse_coo
()
or
x
.
is_sparse_csr
():
return
_C_ops
.
final_state_sparse_subtract
(
x
,
y
)
else
:
raise
ValueError
(
"Currently, sparse.subtract only support the input of SparseCooTensor or SparseCsrTensor"
)
def
multiply
(
x
,
y
,
name
=
None
):
"""
Multiply two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
The equation is:
.. math::
out = x * y
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: the result tensor.
Examples:
.. code-block:: python
import paddle
from paddle.fluid.framework import _test_eager_guard
paddle.device.set_device("cpu")
with _test_eager_guard():
x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
sparse_x = x.to_sparse_csr()
sparse_y = y.to_sparse_csr()
sparse_z = paddle.incubate.sparse.multiply(sparse_x, sparse_y)
print(sparse_z.to_dense())
# [[ 0., 0., 0., -4.],
# [ 0., 0., 9., 0.],
# [ 8., 15., 0., 0.]]
"""
assert
device
.
get_device
(
)
==
"cpu"
,
"Currently, Sparse multiply only support CPU device."
assert
in_dynamic_mode
(),
"Currently, Sparse API only support dynamic mode"
assert
x
.
is_sparse_csr
()
==
y
.
is_sparse_csr
(
),
f
"Expect sparse tensor type to be same"
if
x
.
is_sparse_coo
()
or
x
.
is_sparse_csr
():
return
_C_ops
.
final_state_sparse_multiply
(
x
,
y
)
else
:
raise
ValueError
(
"Currently, sparse.multiply only support the input of SparseCooTensor or SparseCsrTensor"
)
def
divide
(
x
,
y
,
name
=
None
):
"""
Divide two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
The equation is:
.. math::
out = x / y
Args:
x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: the result tensor.
Examples:
.. code-block:: python
import paddle
from paddle.fluid.framework import _test_eager_guard
paddle.device.set_device("cpu")
with _test_eager_guard():
x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
sparse_x = x.to_sparse_csr()
sparse_y = y.to_sparse_csr()
sparse_z = paddle.incubate.sparse.divide(sparse_x, sparse_y)
print(sparse_z.to_dense())
# [[ nan , -inf. , nan , -1. ],
# [ nan , 0. , 1. , nan ],
# [ 2. , 1.66666663, 0. , 0. ]]
"""
assert
device
.
get_device
(
)
==
"cpu"
,
"Currently, Sparse divide only support CPU device."
assert
in_dynamic_mode
(),
"Currently, Sparse API only support dynamic mode"
assert
x
.
is_sparse_csr
()
==
y
.
is_sparse_csr
(
),
f
"Expect sparse tensor type to be same"
if
x
.
dtype
in
[
int32
,
int64
]:
if
x
.
is_sparse_coo
()
or
x
.
is_sparse_csr
():
cx
=
_cast
(
x
,
'float32'
)
cy
=
_cast
(
y
,
'float32'
)
return
_C_ops
.
final_state_sparse_divide
(
cx
,
cy
)
else
:
raise
ValueError
(
"Currently, sparse.divide only support the input of SparseCooTensor or SparseCsrTensor"
)
else
:
if
x
.
is_sparse_coo
()
or
x
.
is_sparse_csr
():
return
_C_ops
.
final_state_sparse_divide
(
x
,
y
)
else
:
raise
ValueError
(
"Currently, sparse.divide only support the input of SparseCooTensor or SparseCsrTensor"
)
python/paddle/incubate/sparse/unary.py
浏览文件 @
682acd22
...
...
@@ -13,19 +13,79 @@
# limitations under the License.
from
paddle
import
_C_ops
from
paddle.fluid.framework
import
dygraph_only
from
paddle.fluid.framework
import
dygraph_only
,
core
,
convert_np_dtype_to_dtype_
__all__
=
[]
@
dygraph_only
def
tanh
(
x
,
name
=
None
):
def
sin
(
x
,
name
=
None
):
"""
sparse tanh activation, requiring x to be a sparse coo or sparse csr tensor.
Calculate elementwise sin of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = sin(x)
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Sparse Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.sin(sparse_x)
"""
return
_C_ops
.
final_state_sparse_sin
(
x
)
@
dygraph_only
def
tan
(
x
,
name
=
None
):
"""
Calculate elementwise tan of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = tanh(x)
out = tan(x)
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Sparse Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.tan(sparse_x)
"""
return
_C_ops
.
final_state_sparse_tan
(
x
)
@
dygraph_only
def
asin
(
x
,
name
=
None
):
"""
Calculate elementwise asin of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = asin(x)
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
...
...
@@ -39,21 +99,200 @@ def tanh(x, name=None):
.. code-block:: python
import paddle
from paddle.fluid.framework import _test_eager_guard
with _test_eager_guard():
dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32')
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.tanh(sparse_x)
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.asin(sparse_x)
"""
return
_C_ops
.
final_state_sparse_asin
(
x
)
@
dygraph_only
def
atan
(
x
,
name
=
None
):
"""
Calculate elementwise atan of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = atan(x)
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Sparse Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.atan(sparse_x)
"""
return
_C_ops
.
final_state_sparse_atan
(
x
)
@
dygraph_only
def
sinh
(
x
,
name
=
None
):
"""
Calculate elementwise sinh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = sinh(x)
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Sparse Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.sinh(sparse_x)
"""
return
_C_ops
.
final_state_sparse_sinh
(
x
)
@
dygraph_only
def
asinh
(
x
,
name
=
None
):
"""
Calculate elementwise asinh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = asinh(x)
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Sparse Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.asinh(sparse_x)
"""
return
_C_ops
.
final_state_sparse_asinh
(
x
)
@
dygraph_only
def
atanh
(
x
,
name
=
None
):
"""
Calculate elementwise atanh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = atanh(x)
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Sparse Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.atanh(sparse_x)
"""
return
_C_ops
.
final_state_sparse_atanh
(
x
)
@
dygraph_only
def
tanh
(
x
,
name
=
None
):
"""
Calculate elementwise tanh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = tanh(x)
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Sparse Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.tanh(sparse_x)
"""
return
_C_ops
.
final_state_sparse_tanh
(
x
)
@
dygraph_only
def
sq
rt
(
x
,
name
=
None
):
def
sq
uare
(
x
,
name
=
None
):
"""
Calculate square root of x, requiring x to be a sparse coo or sparse csr tensor.
Calculate elementwise square of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = square(x)
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Sparse Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.square(sparse_x)
"""
return
_C_ops
.
final_state_sparse_square
(
x
)
@
dygraph_only
def
sqrt
(
x
,
name
=
None
):
"""
Calculate elementwise sqrt of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = sqrt(x)
...
...
@@ -70,24 +309,23 @@ def sqrt(x, name=None):
.. code-block:: python
import paddle
from paddle.fluid.framework import _test_eager_guard
with _test_eager_guard():
dense_x = paddle.to_tensor([4, 0, 1], dtype='float32'
)
sparse_x = dense_x.to_sparse_coo(1
)
out = paddle.incubate.sparse.sqrt(sparse_x)
dense_x = paddle.to_tensor([-2., 0., 1.])
sparse_x = dense_x.to_sparse_coo(1
)
out = paddle.incubate.sparse.sqrt(sparse_x
)
"""
return
_C_ops
.
final_state_sparse_sqrt
(
x
)
@
dygraph_only
def
sin
(
x
,
name
=
None
):
def
log1p
(
x
,
name
=
None
):
"""
Calculate
sin of x, requiring x to be a sparse coo or sparse csr t
ensor.
Calculate
the natural log of (1+x), requiring x to be a SparseCooTensor or SparseCsrT
ensor.
.. math::
out =
sin(
x)
out =
ln(1+
x)
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
...
...
@@ -101,11 +339,136 @@ def sin(x, name=None):
.. code-block:: python
import paddle
from paddle.fluid.framework import _test_eager_guard
with _test_eager_guard():
dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32'
)
sparse_x = dense_x.to_sparse_coo(1
)
out = paddle.incubate.sparse.sin(sparse_x)
dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32')
sparse_x = dense_x.to_sparse_coo(1
)
out = paddle.incubate.sparse.log1p(sparse_x
)
"""
return
_C_ops
.
final_state_sparse_sin
(
x
)
return
_C_ops
.
final_state_sparse_log1p
(
x
)
@
dygraph_only
def
cast
(
x
,
index_dtype
=
None
,
value_dtype
=
None
,
name
=
None
):
"""
cast non-zero-index of SparseTensor to `index_dtype`, non-zero-element of SparseTensor to
`value_dtype` , requiring x to be a SparseCooTensor or SparseCsrTensor.
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
index_dtype (np.dtype|str, optional): Data type of the index of SparseCooTensor,
or crows/cols of SparseCsrTensor. Can be uint8, int8, int16, int32, int64.
value_dtype (np.dtype|str, optional): Data type of the value of SparseCooTensor,
SparseCsrTensor. Can be bool, float16, float32, float64, int8, int32, int64, uint8.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Sparse Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([-2, 0, 1])
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.cast(sparse_x, 'int32', 'float64')
"""
if
index_dtype
and
not
isinstance
(
index_dtype
,
core
.
VarDesc
.
VarType
):
index_dtype
=
convert_np_dtype_to_dtype_
(
index_dtype
)
if
value_dtype
and
not
isinstance
(
value_dtype
,
core
.
VarDesc
.
VarType
):
value_dtype
=
convert_np_dtype_to_dtype_
(
value_dtype
)
return
_C_ops
.
final_state_sparse_cast
(
x
,
index_dtype
,
value_dtype
)
@
dygraph_only
def
pow
(
x
,
factor
,
name
=
None
):
"""
Calculate elementwise pow of x, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = x^{factor}
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
factor (float|int): factor of pow.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Sparse Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.pow(sparse_x, 2)
"""
return
_C_ops
.
final_state_sparse_pow
(
x
,
float
(
factor
))
@
dygraph_only
def
neg
(
x
,
name
=
None
):
"""
Calculate elementwise negative of x, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = -x
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Sparse Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.neg(sparse_x)
"""
return
_C_ops
.
final_state_sparse_scale
(
x
,
-
1.0
,
0.0
,
True
)
@
dygraph_only
def
abs
(
x
,
name
=
None
):
"""
Calculate elementwise absolute value of x, requiring x to be a SparseCooTensor or SparseCsrTensor.
.. math::
out = |x|
Parameters:
x (Tensor): The input Sparse Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Sparse Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
sparse_x = dense_x.to_sparse_coo(1)
out = paddle.incubate.sparse.abs(sparse_x)
"""
return
_C_ops
.
final_state_sparse_abs
(
x
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录