fc_op.cc 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fc_op.h"
16
#include <vector>
T
tensor-tang 已提交
17

18 19 20
namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28 29 30 31 32 33 34
class FCOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                      "X(Input) of Fully Connected should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Out(Output) of Fully Connected should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                      "W(Input) of Fully Connected should not be null.");

    auto in_dims = ctx->GetInputDim("Input");
    auto w_dims = ctx->GetInputDim("W");
35
    bool padding_weights = ctx->Attrs().Get<bool>("padding_weights");
36 37 38

    if (ctx->HasInput("Bias")) {
      auto bias_dims = ctx->GetInputDim("Bias");
39
      auto w_dims1 = padding_weights ? w_dims[1] - 4 : w_dims[1];
40 41
      if (bias_dims.size() == 2) {
        PADDLE_ENFORCE_EQ(bias_dims[0], 1,
42 43 44 45 46 47 48 49 50 51 52 53
                          platform::errors::InvalidArgument(
                              "The shape of Bias is invalid."
                              "The height of Bias should be 1."
                              "But received height of Bias is %d.",
                              bias_dims[0]));
        PADDLE_ENFORCE_EQ(
            bias_dims[1], w_dims1,
            platform::errors::InvalidArgument(
                "The shape of Bias is invalid."
                "The width of Bias should be equal to width of Weight."
                "But received width of Bias is %d and width of Weight is %d.",
                bias_dims[1], w_dims1));
54
      } else if (bias_dims.size() == 1) {
55 56 57 58 59 60 61
        PADDLE_ENFORCE_EQ(
            bias_dims[0], w_dims1,
            platform::errors::InvalidArgument(
                "The shape of Bias is invalid."
                "The height of Bias should be equal to the width of weight."
                "But received height of Bias is %d and width of Weight is %d.",
                bias_dims[0], w_dims1));
62 63
      }
    }
64

65 66 67 68 69
    auto& activation_type = ctx->Attrs().Get<std::string>("activation_type");
    if (!activation_type.empty()) {
      PADDLE_ENFORCE_EQ(activation_type, "relu",
                        "Activation %s is not supportetd in fc now.",
                        activation_type.c_str());
70
    }
71
    if (ctx->Attrs().Get<bool>("use_mkldnn")) {
72 73 74 75
      PADDLE_ENFORCE_EQ(
          in_dims.size() >= 2 && in_dims.size() <= 4, true,
          platform::errors::Unimplemented(
              "Fully Connected input should be 2D, 3D or 4D tensor."));
76 77
    }
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
78
                      "Fully Connected weights should be 2-D tensor.");
79 80 81 82 83 84 85
    int in_num_col_dims = ctx->Attrs().Get<int>("in_num_col_dims");
    PADDLE_ENFORCE_GT(
        in_dims.size(), in_num_col_dims,
        "The input tensor Input's rank of FCOp should be larger than "
        "in_num_col_dims.");

    std::vector<int64_t> output_dims;
86 87
    FCOutputSize(in_dims, w_dims, output_dims, in_num_col_dims,
                 padding_weights);
T
Tao Luo 已提交
88

89 90
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
    ctx->ShareLoD("Input", "Out");
T
Tao Luo 已提交
91
  }
92

93 94 95 96 97
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
M
Michał Gallus 已提交
98 99 100 101
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
    auto input_data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "Input");
102 103 104
    if (ctx.Attr<bool>("use_mkldnn")) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
M
Michał Gallus 已提交
105 106 107 108 109
      using framework::proto::VarType;
      customized_type_value = (input_data_type == VarType::INT8 ||
                               input_data_type == VarType::UINT8)
                                  ? kFCMKLDNNINT8
                                  : kFCMKLDNNFP32;
110
    }
M
Michał Gallus 已提交
111 112
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
T
tensor-tang 已提交
113
  }
114
};
115

116
class FCOpMaker : public framework::OpProtoAndCheckerMaker {
T
tensor-tang 已提交
117
 public:
118 119 120 121 122 123 124 125 126 127 128 129 130 131
  void Make() override {
    AddInput("Input",
             "(Tensor), The input tensor of fully connected operator.");
    AddInput("W", "(Tensor), The weight fc op with shape (I, O).");
    AddInput("Bias", "(Tensor, optional) Bias vector with shape (1 x O")
        .AsDispensable();
    AddOutput("Out",
              "(Tensor) The output tensor of fully connected operator. ");
    AddAttr<int>("in_num_col_dims",
                 "(int, default 1), The fc op can take tensors with more than "
                 "two dimensions as its inputs.")
        .SetDefault(1)
        .EqualGreaterThan(1);
    AddAttr<std::string>("activation_type",
132
                         "Activation type used in fully connected operator.")
133 134 135 136
        .SetDefault("");
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
137 138 139 140 141
    AddAttr<bool>(
        "padding_weights",
        "(bool, default false) When padding weights in the fc fuse pass, "
        "the 'padding_weights' attribute is set as true.")
        .SetDefault(false);
142 143 144
    AddAttr<bool>(framework::kAllKernelsMustComputeRuntimeShape,
                  "Skip calling InferShape() function in the runtime.")
        .SetDefault(true);
M
Michał Gallus 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    /* int8 parameters */
    AddAttr<bool>("use_quantizer",
                  "(bool, default false) "
                  "Set to true for operators that should be quantized and use "
                  "int8 kernel. "
                  "Only used on CPU.")
        .SetDefault(false);
    AddAttr<float>("Scale_in",
                   "(float, default 1.0f), The quantize scale of input data")
        .SetDefault(1.0f);
    AddAttr<std::vector<float>>("Scale_weights",
                                "(std::vector<float>, default {1.0f}), The "
                                "quantize scale of weights data")
        .SetDefault({1.0f});
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
        .SetDefault(1.0f);
    AddAttr<bool>("force_fp32_output",
                  "(bool, default false) Force INT8 kernel output FP32, only "
                  "used in MKL-DNN INT8")
        .SetDefault(false);
166 167 168 169 170 171
    AddComment(R"DOC(
Fully Connected Operator.

The fully connected operation calculates the output based on the input, weights and bias.
The size of each dimension of the parameters checked in the infer-shape.
)DOC");
T
tensor-tang 已提交
172 173 174
  }
};

175 176 177
}  // namespace operators
}  // namespace paddle

T
tensor-tang 已提交
178
namespace ops = paddle::operators;
H
hong 已提交
179 180 181 182 183

REGISTER_OPERATOR(
    fc, ops::FCOp, ops::FCOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
184 185 186
REGISTER_OP_CPU_KERNEL(
    fc, ops::FCOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FCOpKernel<paddle::platform::CPUDeviceContext, double>);