fc_op.cc 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fc_op.h"
16
#include <vector>
T
tensor-tang 已提交
17

18 19 20
namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
class FCOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                      "X(Input) of Fully Connected should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Out(Output) of Fully Connected should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                      "W(Input) of Fully Connected should not be null.");

    auto in_dims = ctx->GetInputDim("Input");
    auto w_dims = ctx->GetInputDim("W");

    if (ctx->HasInput("Bias")) {
      auto bias_dims = ctx->GetInputDim("Bias");
      if (bias_dims.size() == 2) {
        PADDLE_ENFORCE_EQ(bias_dims[0], 1,
                          "The shape of Bias must be [1, dim].");
        PADDLE_ENFORCE_EQ(bias_dims[1], w_dims[1],
                          "The shape of Bias must be [1, dim].");
      } else if (bias_dims.size() == 1) {
        PADDLE_ENFORCE_EQ(bias_dims[0], w_dims[1],
                          "The shape of Bias must be [1, dim].");
      }
    }
48

49 50 51 52 53
    auto& activation_type = ctx->Attrs().Get<std::string>("activation_type");
    if (!activation_type.empty()) {
      PADDLE_ENFORCE_EQ(activation_type, "relu",
                        "Activation %s is not supportetd in fc now.",
                        activation_type.c_str());
54
    }
55 56 57 58 59 60 61 62 63 64 65 66 67 68
    if (ctx->Attrs().Get<bool>("use_mkldnn")) {
      PADDLE_ENFORCE_EQ(in_dims.size() == 2 || in_dims.size() == 4, true,
                        "Fully Connected input should be 2-D or 4-D tensor.");
    }
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "Fully Connected input should be 2-D tensor.");
    int in_num_col_dims = ctx->Attrs().Get<int>("in_num_col_dims");
    PADDLE_ENFORCE_GT(
        in_dims.size(), in_num_col_dims,
        "The input tensor Input's rank of FCOp should be larger than "
        "in_num_col_dims.");

    std::vector<int64_t> output_dims;
    FCOutputSize(in_dims, w_dims, output_dims, in_num_col_dims);
T
Tao Luo 已提交
69

70 71
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
    ctx->ShareLoD("Input", "Out");
T
Tao Luo 已提交
72
  }
73

74 75 76 77 78 79 80 81 82 83 84
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    if (ctx.Attr<bool>("use_mkldnn")) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
    return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                   ctx.GetPlace(), layout, library);
T
tensor-tang 已提交
85
  }
86
};
87 88 89 90 91 92 93 94 95 96 97

void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("W");

  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("W"))) {
    ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
  }
T
tensor-tang 已提交
98 99

  if (ctx->HasInput("Bias")) {
100 101
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("Bias")), true,
                      "Should have bias grad");
T
tensor-tang 已提交
102 103 104
    auto bias_dims = ctx->GetInputDim("Bias");
    ctx->SetOutputDim(framework::GradVarName("Bias"), bias_dims);
  }
105 106 107 108
}

framework::OpKernelType FCOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
109 110
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
T
tensor-tang 已提交
111
  if (ctx.Attr<bool>("use_mkldnn")) {
T
tensor-tang 已提交
112 113 114
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
Y
Yu Yang 已提交
115 116
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout, library);
117 118
}

119
class FCOpMaker : public framework::OpProtoAndCheckerMaker {
T
tensor-tang 已提交
120
 public:
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  void Make() override {
    AddInput("Input",
             "(Tensor), The input tensor of fully connected operator.");
    AddInput("W", "(Tensor), The weight fc op with shape (I, O).");
    AddInput("Bias", "(Tensor, optional) Bias vector with shape (1 x O")
        .AsDispensable();
    AddOutput("Out",
              "(Tensor) The output tensor of fully connected operator. ");
    AddAttr<int>("in_num_col_dims",
                 "(int, default 1), The fc op can take tensors with more than "
                 "two dimensions as its inputs.")
        .SetDefault(1)
        .EqualGreaterThan(1);
    AddAttr<std::string>("activation_type",
                         "Avctivation type used in fully connected operator.")
        .SetDefault("");
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<bool>(framework::kAllKernelsMustComputeRuntimeShape,
                  "Skip calling InferShape() function in the runtime.")
        .SetDefault(true);
    AddComment(R"DOC(
Fully Connected Operator.

The fully connected operation calculates the output based on the input, weights and bias.
The size of each dimension of the parameters checked in the infer-shape.
)DOC");
T
tensor-tang 已提交
149 150 151
  }
};

152 153 154
}  // namespace operators
}  // namespace paddle

T
tensor-tang 已提交
155 156
namespace ops = paddle::operators;
REGISTER_OPERATOR(fc, ops::FCOp, ops::FCOpMaker,
157
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
158
REGISTER_OPERATOR(fc_grad, ops::FCOpGrad);
159 160 161
REGISTER_OP_CPU_KERNEL(
    fc, ops::FCOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FCOpKernel<paddle::platform::CPUDeviceContext, double>);