test_auto_parallel_reshard.py 13.2 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import paddle
import paddle.nn as nn
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
import paddle.distributed.auto_parallel as auto
25
from paddle.distributed.auto_parallel.completion import Completer
26
from paddle.distributed.auto_parallel.dist_context import DistributedContext
C
caozhou 已提交
27
from paddle.distributed import fleet
28
from paddle.distributed.auto_parallel.parallelizer import AutoParallelizer
C
caozhou 已提交
29
from paddle.distributed.auto_parallel.partitioner import Partitioner
30
from paddle.distributed.auto_parallel.reshard import reshard, HAS_SENT, HAS_RECV, HAS_ALLGATHER
31 32
from paddle.distributed.auto_parallel.process_group import _g_process_group_map
from paddle.distributed.auto_parallel.utils import print_program_with_dist_attr
C
caozhou 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

paddle.enable_static()
_global_parallel_strategy = None
_global_process_mesh = None
PP_MESH_0 = None
PP_MESH_1 = None


class MLPLayer(nn.Layer):
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=initializer_range))
        bias_attr = None

        self.linear0 = nn.Linear(
            d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
        self.linear1 = nn.Linear(
            dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)

    def forward(self, input):
        if _global_parallel_strategy == "pp":
            auto.shard_tensor(
62 63 64 65 66
                self.linear0.weight,
                dist_attr={
                    "process_mesh": PP_MESH_0,
                    "dims_mapping": [-1, -1]
                })
C
caozhou 已提交
67
            auto.shard_tensor(
68 69 70 71 72
                self.linear1.weight,
                dist_attr={
                    "process_mesh": PP_MESH_1,
                    "dims_mapping": [-1, -1]
                })
C
caozhou 已提交
73 74
        else:
            auto.shard_tensor(
75 76 77 78 79
                self.linear0.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, -1]
                })
C
caozhou 已提交
80
            auto.shard_tensor(
81 82 83 84 85
                self.linear1.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, -1]
                })
C
caozhou 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)

        return out


def mlp_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
        input = static.data(
            name="input", shape=[batch_size, hidden_size], dtype='float32')
        label = static.data(
            name="label", shape=[batch_size, 1], dtype='float32')

        if _global_parallel_strategy == "pp":
107 108 109 110 111 112 113 114 115 116 117 118
            auto.shard_tensor(
                input,
                dist_attr={
                    "process_mesh": PP_MESH_0,
                    "dims_mapping": [-1, -1]
                })
            auto.shard_tensor(
                label,
                dist_attr={
                    "process_mesh": PP_MESH_1,
                    "dims_mapping": [-1, -1]
                })
C
caozhou 已提交
119
        elif _global_parallel_strategy == "dp":
120 121 122 123 124 125
            auto.shard_tensor(
                input,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1]
                })
C
caozhou 已提交
126
        else:
127 128 129 130 131 132
            auto.shard_tensor(
                input,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, -1]
                })
C
caozhou 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145

        mlp = MLPLayer(
            hidden_size=hidden_size,
            intermediate_size=4 * hidden_size,
            initializer_range=0.02)

        predict = mlp(input)
        error_cost = paddle.nn.functional.square_error_cost(predict, label)
        loss = paddle.mean(error_cost)

    return loss, train_program, start_program


146 147 148 149 150
def get_dist_prog(train_program,
                  startup_program,
                  dist_context,
                  rank_id,
                  change_process_mesh=False):
C
caozhou 已提交
151 152 153
    loss, train_program, startup_program = mlp_forward(train_program,
                                                       startup_program)

154 155 156 157 158 159
    fleet._user_defined_strategy = fleet.DistributedStrategy()
    fleet.user_defined_optimizer = paddle.fluid.optimizer.AdamOptimizer()
    parallelizer = AutoParallelizer(fleet)
    parallelizer._dist_context = dist_context

    # serial forward & backward completion
160 161 162
    completer = Completer(dist_context)
    complete_train_program = completer.complete_forward_annotation(
        train_program)
163
    dist_context.block_state.parse_forward_blocks(complete_train_program)
164 165 166 167 168 169
    if change_process_mesh:
        global PP_MESH_1
        dist_context.get_tensor_dist_attr_for_program(
            train_program.global_block().vars[
                "gelu_0.tmp_0"]).process_mesh = PP_MESH_1

170 171 172 173 174 175 176 177
    params_grads = parallelizer._generate_backward(
        complete_train_program,
        startup_program,
        loss,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None)

C
caozhou 已提交
178
    # logical partition
179 180 181 182 183 184 185
    partitioner = Partitioner(dist_context, rank_id)
    auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads = partitioner.partition(
        complete_train_program, startup_program, params_grads)

    partitioned_optimize_ops = parallelizer._apply_optimize(
        auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads)

186
    return auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads
C
caozhou 已提交
187 188 189 190 191 192


def check_backward_dist_attr(dist_context, dist_main_prog, op_need_check):
    has_dist_attr = True
    vars = dist_main_prog.global_block().vars

193 194
    op_dist_attr = dist_context.get_op_dist_attr_for_program(op_need_check)
    if not op_dist_attr or not op_dist_attr.process_mesh:
C
caozhou 已提交
195 196 197 198
        has_dist_attr = False

    for var_name in op_need_check.input_arg_names:
        if not op_dist_attr.get_input_dims_mapping(var_name) or \
199 200
        not dist_context.get_tensor_dist_attr_for_program(vars[var_name]).dims_mapping or \
        not dist_context.get_tensor_dist_attr_for_program(vars[var_name]).process_mesh:
C
caozhou 已提交
201 202 203 204 205
            has_dist_attr = False
            break

    if has_dist_attr:
        for var_name in op_need_check.output_arg_names:
206 207
            if not dist_context.get_tensor_dist_attr_for_program(vars[var_name]).dims_mapping or \
            not dist_context.get_tensor_dist_attr_for_program(vars[var_name]).process_mesh:
C
caozhou 已提交
208 209 210 211 212 213 214 215 216 217
                has_dist_attr = False
                break

    return has_dist_attr


def check_send_recv_result(dist_main_prog, rank_id):
    send_result = False
    recv_result = False
    ops = dist_main_prog.global_block().ops
218

C
caozhou 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    if rank_id == 0:
        for idx, op in enumerate(ops):
            if op.type == "send_v2" and "gelu_0.tmp_0" in op.input_arg_names:
                send_result = True
            if op.type == "recv_v2" and "gelu_0.tmp_0@GRAD" in op.output_arg_names[
                    0]:
                recv_result = True
    else:
        for idx, op in enumerate(ops):
            if op.type == "send_v2" and "gelu_0.tmp_0@GRAD" in op.input_arg_names:
                send_result = True
            if op.type == "recv_v2" and "gelu_0.tmp_0" in op.output_arg_names[
                    0]:
                recv_result = True

    return send_result and recv_result


def check_initialization(dist_startup_prog, rank_id):
    if rank_id == 0:
        need_check_params = [
            "layer_norm_0.b_0", "layer_norm_0.w_0", "linear_0.w_0",
            "linear_0.b_0"
        ]
    else:
        need_check_params = ['linear_1.w_0', 'linear_1.b_0']

    params = []
    for var_name, var in dist_startup_prog.global_block().vars.items():
        if var.is_parameter:
            params.append(var_name)

    return params == need_check_params


def check_initialization_for_dp(dist_startup_prog):
    need_check_params = [
        "layer_norm_0.b_0", "layer_norm_0.w_0", "linear_0.w_0", "linear_0.b_0"
    ] + ['linear_1.w_0', 'linear_1.b_0']
    params = []
    for var_name, var in dist_startup_prog.global_block().vars.items():
        if var.is_parameter:
            params.append(var_name)
    broadcast_varnames = []
    for op in dist_startup_prog.global_block().ops:
        if op.type == "c_broadcast":
            broadcast_varnames.append(op.output_arg_names[0])

267 268
    return sorted(params) == sorted(need_check_params) == sorted(
        broadcast_varnames)
C
caozhou 已提交
269 270 271 272 273


class TestMLPReshard(unittest.TestCase):
    def test_complete_backward_annotation(self):
        global _global_process_mesh
274
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
C
caozhou 已提交
275 276 277 278 279

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 0
280
        dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog(
C
caozhou 已提交
281 282 283 284 285 286 287
            train_program, startup_program, dist_context, 0)

        op_need_check = None
        for op in dist_main_prog.global_block().ops:
            if op.type == "gelu_grad":
                op_need_check = op
                break
288
        # print_program_with_dist_attr(dist_main_prog, dist_context)
C
caozhou 已提交
289 290 291 292 293 294 295 296 297 298

        # grad op should have dist attr
        self.assertTrue(
            check_backward_dist_attr(dist_context, dist_main_prog,
                                     op_need_check))

    def test_mlp_pp(self):
        global _global_parallel_strategy
        _global_parallel_strategy = "pp"
        global _global_process_mesh
299
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
C
caozhou 已提交
300
        global PP_MESH_0
301
        PP_MESH_0 = auto.ProcessMesh(mesh=[0])
C
caozhou 已提交
302
        global PP_MESH_1
303
        PP_MESH_1 = auto.ProcessMesh(mesh=[1])
C
caozhou 已提交
304 305 306 307 308

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 1
309
        dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog(
C
caozhou 已提交
310
            train_program, startup_program, dist_context, rank_id)
311 312
        for key in list(_g_process_group_map.keys()):
            del _g_process_group_map[key]
313 314
        reshard(dist_main_prog, dist_startup_prog, rank_id, dist_context,
                dist_params_grads)
C
caozhou 已提交
315 316 317 318 319 320 321

        # check send and recv result
        self.assertTrue(check_send_recv_result(dist_main_prog, rank_id))

        # parameter initialization of every rank should be different in the pipeline scene
        self.assertTrue(check_initialization(dist_startup_prog, rank_id))

322 323 324 325 326 327 328 329
    def test_mlp_pp_diff_process_mesh(self):
        HAS_SENT.clear()
        HAS_RECV.clear()
        HAS_ALLGATHER.clear()
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 1
330
        dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog(
331 332 333
            train_program, startup_program, dist_context, rank_id, True)
        for key in list(_g_process_group_map.keys()):
            del _g_process_group_map[key]
334 335
        reshard(dist_main_prog, dist_startup_prog, rank_id, dist_context,
                dist_params_grads)
336 337 338 339 340 341
        print_program_with_dist_attr(dist_main_prog, dist_context)

        # check send and recv result
        self.assertTrue(check_send_recv_result(dist_main_prog, rank_id))
        self.assertTrue(check_initialization(dist_startup_prog, rank_id))

C
caozhou 已提交
342 343 344 345
    def test_mlp_dp(self):
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
        global _global_process_mesh
346
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
C
caozhou 已提交
347 348 349 350 351

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 0
352
        dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog(
C
caozhou 已提交
353
            train_program, startup_program, dist_context, rank_id)
354 355
        reshard(dist_main_prog, dist_startup_prog, rank_id, dist_context,
                dist_params_grads)
C
caozhou 已提交
356 357 358 359 360 361 362 363 364
        # send and recv should not exist in dp scene.
        self.assertFalse(check_send_recv_result(dist_main_prog, rank_id))

        # all parameters should be initialized in dp scene
        self.assertTrue(check_initialization_for_dp(dist_startup_prog))


if __name__ == "__main__":
    unittest.main()