test_auto_parallel_reshard.py 10.8 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import paddle
import paddle.nn as nn
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
import paddle.distributed.auto_parallel as auto
from paddle.distributed.auto_parallel.context import DistributedContext
from paddle.distributed import fleet
from paddle.distributed.auto_parallel.partitioner import Partitioner
from paddle.distributed.auto_parallel.reshard import reshard
C
caozhou 已提交
29
from paddle.distributed.auto_parallel.process import PROCESS_GROUP_MAP
C
caozhou 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

paddle.enable_static()
_global_parallel_strategy = None
_global_process_mesh = None
ROOT_MESH = auto.ProcessMesh([0, 1])
PP_MESH_0 = None
PP_MESH_1 = None


class MLPLayer(nn.Layer):
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=initializer_range))
        bias_attr = None

        self.linear0 = nn.Linear(
            d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
        self.linear1 = nn.Linear(
            dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)

    def forward(self, input):
        if _global_parallel_strategy == "pp":
            auto.shard_tensor(
                self.linear0.weight, PP_MESH_0, dim_mapping=[-1, -1])
            auto.shard_tensor(
                self.linear1.weight, PP_MESH_1, dim_mapping=[-1, -1])
        else:
            auto.shard_tensor(
                self.linear0.weight, _global_process_mesh,
                dim_mapping=[-1, -1])
            auto.shard_tensor(
                self.linear1.weight, _global_process_mesh,
                dim_mapping=[-1, -1])

        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)

        return out


def mlp_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
        input = static.data(
            name="input", shape=[batch_size, hidden_size], dtype='float32')
        label = static.data(
            name="label", shape=[batch_size, 1], dtype='float32')

        if _global_parallel_strategy == "pp":
            auto.shard_tensor(input, PP_MESH_0, dim_mapping=[-1, -1])
            auto.shard_tensor(label, PP_MESH_1, dim_mapping=[-1, -1])
        elif _global_parallel_strategy == "dp":
            auto.shard_tensor(input, _global_process_mesh, dim_mapping=[0, -1])
        else:
            auto.shard_tensor(input, _global_process_mesh, dim_mapping=[-1, -1])

        mlp = MLPLayer(
            hidden_size=hidden_size,
            intermediate_size=4 * hidden_size,
            initializer_range=0.02)

        predict = mlp(input)
        error_cost = paddle.nn.functional.square_error_cost(predict, label)
        loss = paddle.mean(error_cost)

    return loss, train_program, start_program


def get_dist_prog(train_program, startup_program, dist_context, rank_id):
    global _global_process_mesh
    dist_context.set_process_mesh(_global_process_mesh)
    loss, train_program, startup_program = mlp_forward(train_program,
                                                       startup_program)

    # auto completion
    complete_train_program = auto.complete_annotation(train_program,
                                                      dist_context)

    dist_strategy = fleet.DistributedStrategy()
    partitioner = Partitioner(dist_strategy, dist_context, rank_id)
    # logical partition
    auto_parallel_main_prog, auto_parallel_startup_prog = partitioner.transpile_forward(
        complete_train_program, startup_program)
    dist_params_grads = partitioner.apply_backward(
        loss, complete_train_program, startup_program, auto_parallel_main_prog,
        auto_parallel_startup_prog)
    optimizer = paddle.fluid.optimizer.AdamOptimizer()
    opt_ops = partitioner.apply_optimize(optimizer, dist_params_grads,
                                         auto_parallel_main_prog,
                                         auto_parallel_startup_prog)
    return auto_parallel_main_prog, auto_parallel_startup_prog


def check_backward_dist_attr(dist_context, dist_main_prog, op_need_check):
    has_dist_attr = True
    vars = dist_main_prog.global_block().vars

    op_dist_attr = dist_context.get_op_distributed_attr_for_program(
        op_need_check)
    if not op_dist_attr or not op_dist_attr.get_process_mesh():
        has_dist_attr = False

    for var_name in op_need_check.input_arg_names:
        if not op_dist_attr.get_input_dims_mapping(var_name) or \
        not dist_context.get_tensor_distributed_attr_for_program(vars[var_name]).get_dims_mapping() or \
        not dist_context.get_tensor_distributed_attr_for_program(vars[var_name]).get_process_mesh():
            has_dist_attr = False
            break

    if has_dist_attr:
        for var_name in op_need_check.output_arg_names:
            if not dist_context.get_tensor_distributed_attr_for_program(vars[var_name]).get_dims_mapping() or \
            not dist_context.get_tensor_distributed_attr_for_program(vars[var_name]).get_process_mesh():
                has_dist_attr = False
                break

    return has_dist_attr


def check_send_recv_result(dist_main_prog, rank_id):
    send_result = False
    recv_result = False
    ops = dist_main_prog.global_block().ops
    if rank_id == 0:
        for idx, op in enumerate(ops):
            if op.type == "send_v2" and "gelu_0.tmp_0" in op.input_arg_names:
                send_result = True
            if op.type == "recv_v2" and "gelu_0.tmp_0@GRAD" in op.output_arg_names[
                    0]:
                recv_result = True
    else:
        for idx, op in enumerate(ops):
            if op.type == "send_v2" and "gelu_0.tmp_0@GRAD" in op.input_arg_names:
                send_result = True
            if op.type == "recv_v2" and "gelu_0.tmp_0" in op.output_arg_names[
                    0]:
                recv_result = True

    return send_result and recv_result


def check_initialization(dist_startup_prog, rank_id):
    if rank_id == 0:
        need_check_params = [
            "layer_norm_0.b_0", "layer_norm_0.w_0", "linear_0.w_0",
            "linear_0.b_0"
        ]
    else:
        need_check_params = ['linear_1.w_0', 'linear_1.b_0']

    params = []
    for var_name, var in dist_startup_prog.global_block().vars.items():
        if var.is_parameter:
            params.append(var_name)

    return params == need_check_params


def check_initialization_for_dp(dist_startup_prog):
    need_check_params = [
        "layer_norm_0.b_0", "layer_norm_0.w_0", "linear_0.w_0", "linear_0.b_0"
    ] + ['linear_1.w_0', 'linear_1.b_0']
    params = []
    for var_name, var in dist_startup_prog.global_block().vars.items():
        if var.is_parameter:
            params.append(var_name)
    broadcast_varnames = []
    for op in dist_startup_prog.global_block().ops:
        if op.type == "c_broadcast":
            broadcast_varnames.append(op.output_arg_names[0])

213 214
    return sorted(params) == sorted(need_check_params) == sorted(
        broadcast_varnames)
C
caozhou 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255


class TestMLPReshard(unittest.TestCase):
    def test_complete_backward_annotation(self):
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1], parent=ROOT_MESH)

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 0
        dist_main_prog, dist_startup_prog = get_dist_prog(
            train_program, startup_program, dist_context, 0)

        op_need_check = None
        for op in dist_main_prog.global_block().ops:
            if op.type == "gelu_grad":
                op_need_check = op
                break

        # grad op should have dist attr
        self.assertTrue(
            check_backward_dist_attr(dist_context, dist_main_prog,
                                     op_need_check))

    def test_mlp_pp(self):
        global _global_parallel_strategy
        _global_parallel_strategy = "pp"
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1], parent=ROOT_MESH)
        global PP_MESH_0
        PP_MESH_0 = auto.ProcessMesh(mesh=[0], parent=ROOT_MESH)
        global PP_MESH_1
        PP_MESH_1 = auto.ProcessMesh(mesh=[1], parent=ROOT_MESH)

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 1
        dist_main_prog, dist_startup_prog = get_dist_prog(
            train_program, startup_program, dist_context, rank_id)
C
caozhou 已提交
256 257
        for key in list(PROCESS_GROUP_MAP.keys()):
            del PROCESS_GROUP_MAP[key]
C
caozhou 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        reshard(dist_main_prog, dist_startup_prog, rank_id, dist_context)

        # check send and recv result
        self.assertTrue(check_send_recv_result(dist_main_prog, rank_id))

        # parameter initialization of every rank should be different in the pipeline scene
        self.assertTrue(check_initialization(dist_startup_prog, rank_id))

    def test_mlp_dp(self):
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1], parent=ROOT_MESH)

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 0
        dist_main_prog, dist_startup_prog = get_dist_prog(
            train_program, startup_program, dist_context, rank_id)
        reshard(dist_main_prog, dist_startup_prog, rank_id, dist_context)
        # send and recv should not exist in dp scene.
        self.assertFalse(check_send_recv_result(dist_main_prog, rank_id))

        # all parameters should be initialized in dp scene
        self.assertTrue(check_initialization_for_dp(dist_startup_prog))


if __name__ == "__main__":
    unittest.main()