test_static_save_load.py 68.8 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
W
WeiXin 已提交
16
import sys
H
hong 已提交
17 18

import unittest
19
import paddle
H
hong 已提交
20 21
import paddle.fluid as fluid
import paddle.fluid.core as core
22
from paddle.nn import Embedding
H
hong 已提交
23 24 25 26
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Adam
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope
27
from paddle.fluid.executor import global_scope
H
hong 已提交
28 29
import numpy as np
import six
30
import pickle
H
hong 已提交
31
import os
32
import errno
H
hong 已提交
33

34 35
paddle.enable_static()

H
hong 已提交
36 37

class SimpleLSTMRNN(fluid.Layer):
38

H
hong 已提交
39 40 41 42 43 44 45
    def __init__(self,
                 name_scope,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
H
hong 已提交
46
        super(SimpleLSTMRNN, self).__init__()
H
hong 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
        self._input = None
        self._num_steps = num_steps
        self.cell_array = []
        self.hidden_array = []

        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
            weight_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
            bias_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))

    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        self.cell_array = []
        self.hidden_array = []

        for i in range(self._num_layers):
85 86 87 88 89 90 91 92 93 94 95 96
            pre_hidden = fluid.layers.slice(init_hidden,
                                            axes=[0],
                                            starts=[i],
                                            ends=[i + 1])
            pre_cell = fluid.layers.slice(init_cell,
                                          axes=[0],
                                          starts=[i],
                                          ends=[i + 1])
            pre_hidden = fluid.layers.reshape(pre_hidden,
                                              shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(pre_cell,
                                            shape=[-1, self._hidden_size])
H
hong 已提交
97 98 99 100 101
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

        res = []
        for index in range(self._num_steps):
102 103 104 105 106 107
            self._input = fluid.layers.slice(input_embedding,
                                             axes=[1],
                                             starts=[index],
                                             ends=[index + 1])
            self._input = fluid.layers.reshape(self._input,
                                               shape=[-1, self._hidden_size])
H
hong 已提交
108 109 110 111 112 113 114 115 116 117
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

                nn = fluid.layers.concat([self._input, pre_hidden], 1)
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
118 119 120
                i, j, f, o = fluid.layers.split(gate_input,
                                                num_or_sections=4,
                                                dim=-1)
H
hong 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
134 135
                fluid.layers.reshape(self._input,
                                     shape=[1, -1, self._hidden_size]))
H
hong 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell


class PtbModel(fluid.Layer):
150

H
hong 已提交
151 152 153 154 155 156 157 158
    def __init__(self,
                 name_scope,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
H
hong 已提交
159
        super(PtbModel, self).__init__()
H
hong 已提交
160 161 162 163 164 165
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
166 167 168 169 170 171
        self.simple_lstm_rnn = SimpleLSTMRNN(self.full_name(),
                                             hidden_size,
                                             num_steps,
                                             num_layers=num_layers,
                                             init_scale=init_scale,
                                             dropout=dropout)
172 173 174 175
        self.embedding = paddle.nn.Embedding(
            num_embeddings=vocab_size,
            embedding_dim=hidden_size,
            weight_attr=fluid.ParamAttr(
H
hong 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
        self.softmax_weight = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
        self.softmax_bias = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def forward(self, input, label, init_hidden, init_cell):
        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

199 200
        # NPU 'tok_k' kernel only support `int32` dtype, so cast `input` from `int64` to `int32`.
        input = fluid.layers.cast(input, "int32")
H
hong 已提交
201 202 203 204 205 206 207 208
        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
209 210
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(
            x_emb, init_h, init_c)
H
hong 已提交
211 212 213 214 215

        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
216 217 218 219 220
        projection = fluid.layers.reshape(projection,
                                          shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(logits=projection,
                                                       label=label,
                                                       soft_label=False)
H
hong 已提交
221 222 223 224 225 226 227
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)

        return loss, last_hidden, last_cell


228
class TestSaveLoadBase(unittest.TestCase):
229

230
    def set_place(self):
231 232
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
233

H
hong 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
247 248 249 250 251 252
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
H
hong 已提交
253

254
            place = self.set_place()
H
hong 已提交
255 256
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
257 258 259
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
H
hong 已提交
260
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
261 262 263 264 265 266
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
H
hong 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
286 287
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
H
hong 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
305
                if isinstance(var, framework.Parameter) or var.persistable:
306 307
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
308
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
309 310 311 312 313 314 315
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.save(main_program, "./test_1")

            # set var to zero
            for var in main_program.list_vars():
316
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
317 318 319
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

320 321
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
322
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
323 324
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

H
hong 已提交
325
            fluid.load(main_program, "./test_1.pdparams", exe)
H
hong 已提交
326 327

            for var in main_program.list_vars():
328
                if isinstance(var, framework.Parameter) or var.persistable:
329 330
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
331 332 333 334
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))


335
class TestSaveLoadPartial(unittest.TestCase):
336

337
    def set_place(self):
338 339
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
340

H
hong 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
354 355 356 357 358 359
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
H
hong 已提交
360

361
            place = self.set_place()
H
hong 已提交
362 363
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
364 365 366
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
H
hong 已提交
367
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
368 369 370 371 372 373
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
H
hong 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
401 402
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
H
hong 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
420
                if isinstance(var, framework.Parameter) or var.persistable:
421 422
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
423
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
424 425 426 427 428 429 430
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.save(main_program, "./test_1")

            # set var to zero
            for var in main_program.list_vars():
431
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
432 433 434
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

435 436
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
437
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
438 439
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

H
hong 已提交
440
            fluid.load(test_program, "./test_1.pdopt", None)
H
hong 已提交
441 442

            for var in test_program.list_vars():
443
                if isinstance(var, framework.Parameter) or var.persistable:
444 445
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
446 447
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))
H
hong 已提交
448
            fluid.load(test_program, "./test_1.pdmodel", None)
H
hong 已提交
449 450


451
class TestSaveLoadSetStateDict(unittest.TestCase):
452

453
    def set_place(self):
454 455
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
456

457 458 459 460 461 462 463 464 465 466 467 468 469
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
470 471 472 473 474 475
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
476

477
            place = self.set_place()
478 479
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
480 481 482
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
483
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
484 485 486 487 488 489
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
509 510
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
529 530
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
531
                    # make sure all the paramerter or optimizer var have been update
532 533 534 535 536 537 538 539 540 541 542
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.save(main_program, "./test_1")

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

543 544
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
545
                    # make sure all the paramerter or optimizer var have been set to zero
546 547 548 549 550 551
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.load(main_program, "./test_1", exe)

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
552 553
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
554 555 556 557 558
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))


class TestProgramStatePartial(unittest.TestCase):
559

560
    def set_place(self):
561 562
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
563

564 565 566 567 568 569 570 571 572 573 574 575 576
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
577 578 579 580 581 582
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
583

584
            place = self.set_place()
585 586
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
587 588 589
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
590
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
591 592 593 594 595 596
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
624 625
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
644 645
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
646
                    # make sure all the paramerter or optimizer var have been update
647 648 649
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

650
            fluid.save(main_program, os.path.join('some_dir', 'test_1'))
651 652 653 654 655 656 657

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

658 659
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
660
                    # make sure all the paramerter or optimizer var have been set to zero
661 662 663
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            #fluid.load(test_program, "./test_1", None )
664 665
            program_state = fluid.load_program_state(
                os.path.join('some_dir', 'test_1'))
H
hong 已提交
666 667 668 669 670 671 672 673 674 675

            program_state_1 = fluid.load_program_state(
                os.path.join('some_dir', 'test_1.pdparams'))

            program_state_2 = fluid.load_program_state(
                os.path.join('some_dir', 'test_1.pdopt'))

            program_state_3 = fluid.load_program_state(
                os.path.join('some_dir', 'test_1.pdmodel'))

676 677 678 679
            fluid.set_program_state(test_program, program_state)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
680 681
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
682 683 684
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

H
hong 已提交
685 686 687 688 689 690
            # check 1
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

691 692
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
693
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
694 695 696 697 698 699
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_1)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
700 701
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
702 703 704 705 706 707 708 709 710
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            # check 2
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

711 712
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
713
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
714 715 716 717 718 719
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_2)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
720 721
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
722 723 724 725 726 727 728 729 730
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            # check 3
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

731 732
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
733
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
734 735 736 737 738 739
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_3)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
740 741
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
742 743 744
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

745 746

class TestVariableInit(unittest.TestCase):
747

748
    def set_place(self):
749 750
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
751

752 753 754 755 756 757
    def test_variable_init(self):

        x = fluid.data(name="x", shape=[10, 10], dtype='float32')
        y = fluid.layers.fc(x, 10)
        z = fluid.layers.fc(y, 10)

758
        place = self.set_place()
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        fluid.save(fluid.default_main_program(), "./test_path")

        def set_var(var, ndarray):
            t = var.get_tensor()
            p = t._place()
            if p.is_cpu_place():
                place = paddle.fluid.CPUPlace()
            elif p.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            else:
                p = paddle.fluid.core.Place()
                p.set_place(t._place())
                place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            t.set(ndarray, place)

        program = fluid.default_main_program()
        new_scope = fluid.core.Scope()

781
        place = self.set_place()
782
        exe = fluid.Executor(place)
783 784
        parameter_list = list(filter(fluid.io.is_parameter,
                                     program.list_vars()))
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

        fluid.core._create_loaded_parameter(parameter_list, new_scope,
                                            exe._default_executor)
        parameter_file_name = "./test_path.pdparams"
        with open(parameter_file_name, 'rb') as f:
            load_dict = pickle.load(f)

        for v in parameter_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, parameter_file_name)
            new_v = new_scope.find_var(v.name)
            set_var(new_v, load_dict[v.name])

        opt_list = list(
            filter(fluid.io.is_belong_to_optimizer, program.list_vars()))

        fluid.core._create_loaded_parameter(opt_list, new_scope,
                                            exe._default_executor)
        opt_file_name = "./test_path.pdopt"
        with open(opt_file_name, 'rb') as f:
            load_dict = pickle.load(f)

        for v in opt_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)

            new_v = new_scope.find_var(v.name)
            set_var(new_v, load_dict[v.name])

        base_map = {}
        for var in program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
819 820
                t = np.array(fluid.global_scope().find_var(
                    var.name).get_tensor())
T
tianshuo78520a 已提交
821
                # make sure all the paramerter or optimizer var have been update
822 823 824 825 826 827 828 829 830 831
                base_map[var.name] = t

        for var in program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
                new_t = np.array(new_scope.find_var(var.name).get_tensor())
                base_t = base_map[var.name]

                self.assertTrue(np.array_equal(new_t, base_t))


H
hong 已提交
832
class TestLoadFromOldInterface(unittest.TestCase):
833

H
hong 已提交
834 835 836 837
    def setUp(self):
        if os.path.exists("test_path.pdparams"):
            os.remove("test_path.pdparams")

838 839 840
        if os.path.exists("test_static_load_var_list.pdparams"):
            os.remove("test_static_load_var_list.pdparams")

841
    def set_place(self):
842 843
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
844

H
hong 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857
    def test_load_from_old_interface(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
858 859 860 861 862 863
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
H
hong 已提交
864

865
            place = self.set_place()
H
hong 已提交
866 867
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
868 869 870
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
H
hong 已提交
871
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
872 873 874 875 876 877
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
H
hong 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_clone_program = fluid.default_main_program().clone()
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
899 900
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
H
hong 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
919 920
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
921
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
922 923 924 925 926 927 928 929 930 931 932 933
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            #fluid.save(main_program, "./test_1")
            fluid.io.save_persistables(exe, "test_path", main_program)

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

934 935
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
936
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
937 938 939 940 941 942
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.load(main_program, "test_path", exe)

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
943 944
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    old_shape = np.array(ten).shape
                    new_shape = [e + 10 for e in old_shape]

                    var.desc.set_shape(new_shape)
            with self.assertRaises(RuntimeError):
                fluid.load(main_program, "test_path", exe)

T
tianshuo78520a 已提交
958
            # check unused parameter
H
hong 已提交
959 960 961

            fluid.load(test_clone_program, "test_path", exe)

962 963 964 965 966 967 968 969 970 971 972 973 974
    def test_load_from_old_interface_var_list(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
975 976 977 978 979 980
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
981

982
            place = self.set_place()
983 984
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
985 986 987
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
988
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
989 990 991 992 993 994
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_clone_program = fluid.default_main_program().clone()
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
1016 1017
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1036 1037
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
1038 1039 1040 1041 1042 1043 1044 1045
                    # make sure all the paramerter or optimizer var have been update
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            #fluid.save(main_program, "./test_1")
            fluid.io.save_persistables(exe, "test_static_load_var_list",
                                       main_program)

1046
            # set var to zero
1047 1048 1049 1050 1051 1052 1053 1054
            var_list = []
            for i, var in enumerate(main_program.list_vars()):
                if isinstance(var, framework.Parameter) or var.persistable:
                    if i % 2 == 0:
                        var_list.append(var)
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

1055 1056
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
1057 1058 1059 1060 1061 1062 1063
                    # make sure all the paramerter or optimizer var have been set to zero
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.load(main_program, "test_static_load_var_list", exe, var_list)
            var_list_names = [var.name for var in var_list]
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1064 1065
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
1066 1067 1068 1069 1070 1071 1072 1073
                    if var.name in var_list_names:
                        # loaded vars
                        base_t = base_map[var.name]
                        self.assertTrue(np.array_equal(new_t, base_t))
                    else:
                        #not loaded vars
                        self.assertTrue(np.sum(np.abs(new_t)) == 0)

H
hong 已提交
1074 1075

class TestLoadFromOldInterfaceSingleFile(unittest.TestCase):
1076

1077
    def set_place(self):
1078 1079
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
1080

H
hong 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    def test_load_from_old_interface(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
1094 1095 1096 1097 1098 1099
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
H
hong 已提交
1100

1101
            place = self.set_place()
H
hong 已提交
1102 1103
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
1104 1105 1106
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
H
hong 已提交
1107
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
1108 1109 1110 1111 1112 1113
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
H
hong 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
1133 1134
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
H
hong 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1153 1154
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
1155
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1156 1157 1158 1159
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            #fluid.save(main_program, "./test_1")
1160 1161 1162 1163
            fluid.io.save_persistables(exe,
                                       "test_path",
                                       main_program,
                                       filename="model_single")
H
hong 已提交
1164 1165 1166 1167 1168 1169 1170

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

1171 1172
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
1173
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1174 1175 1176 1177 1178 1179 1180 1181
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            file_model_path = os.path.join("test_path", "model_single")
            fluid.load(main_program, file_model_path, exe,
                       fluid.io.get_program_persistable_vars(main_program))

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1182 1183
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            # test exception
            # change shape
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    old_shape = np.array(ten).shape
                    new_shape = [e + 10 for e in old_shape]

                    var.desc.set_shape(new_shape)

            with self.assertRaises(RuntimeError):
                fluid.load(main_program, file_model_path, exe,
                           fluid.io.get_program_persistable_vars(main_program))

1201 1202 1203 1204
            fluid.io.save_params(exe,
                                 "test_path",
                                 main_program,
                                 filename="model_single")
H
hong 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
            with self.assertRaises(RuntimeError):
                fluid.load(main_program, file_model_path, exe,
                           fluid.io.get_program_persistable_vars(main_program))

            # check when executor is None
            with self.assertRaises(ValueError):
                fluid.load(main_program, file_model_path, None,
                           fluid.io.get_program_persistable_vars(main_program))

            # check when var list is None
            with self.assertRaises(ValueError):
                fluid.load(main_program, file_model_path, exe, None)

            # check save params, load var_list = get_program_persistable_vars
            with self.assertRaises(RuntimeError):
1220 1221 1222
                temp_var = framework.Variable(main_program.global_block(),
                                              shape=[1],
                                              name="test_temp_var")
H
hong 已提交
1223 1224 1225 1226 1227
                all_var_list = list(main_program.list_vars())
                fluid.load(main_program, file_model_path, exe,
                           all_var_list + [temp_var])


H
hong 已提交
1228
class TestProgramStateOldSave(unittest.TestCase):
1229

1230 1231 1232 1233
    def setUp(self):
        self.test_dygraph = True

    def set_place(self):
1234 1235
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
1236

H
hong 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
1250 1251 1252 1253 1254 1255
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
H
hong 已提交
1256

1257
            place = self.set_place()
H
hong 已提交
1258 1259
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
1260 1261 1262
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
H
hong 已提交
1263
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
1264 1265 1266 1267 1268 1269
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
H
hong 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
1297 1298
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
H
hong 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1317 1318
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
1319
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.io.save_persistables(exe, "test_program_1", main_program)

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

1331 1332
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
1333
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1334 1335
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

1336
            # case 1: load basic
H
hong 已提交
1337 1338
            program_state = fluid.load_program_state("test_program_1")
            fluid.set_program_state(main_program, program_state)
1339 1340 1341
            self.check_in_static(main_program, base_map)

            # case 2: load with no need file
1342 1343
            def symlink_force(target, link_name):
                try:
1344
                    self.create_symlink(target, link_name)
1345 1346 1347
                except OSError as e:
                    if e.errno == errno.EEXIST:
                        os.remove(link_name)
1348
                        self.create_symlink(target, link_name)
1349 1350 1351
                    else:
                        raise e

1352 1353
            orig_filepath = './test_program_1/fc_0.w_0'
            symlink_filepath = './test_program_1/link_fc_0.w_0'
1354 1355
            # create a needless link file for coverage
            symlink_force(orig_filepath, symlink_filepath)
1356 1357 1358
            program_state = fluid.load_program_state("test_program_1")
            fluid.set_program_state(main_program, program_state)
            self.check_in_static(main_program, base_map)
H
hong 已提交
1359

1360 1361 1362 1363 1364
            # case 3: load with var_list
            program_state = fluid.load_program_state(
                "test_program_1", main_program.all_parameters())
            fluid.set_program_state(main_program, program_state)
            self.check_in_static(main_program, base_map)
H
hong 已提交
1365

1366 1367 1368 1369 1370 1371
        if self.test_dygraph:
            # make sure `load_program_state` can be used in dynamic graph mode
            with fluid.dygraph.guard(place):
                load_state = fluid.load_program_state("test_program_1")
                for k, v in load_state.items():
                    self.assertTrue(np.array_equal(base_map[k], v))
1372

1373 1374 1375 1376 1377 1378 1379 1380
    def create_symlink(self, target, link_name):
        try:
            os.symlink(target, link_name)
        except AttributeError:
            import ctypes
            kernel_dll = ctypes.windll.LoadLibrary("kernel32.dll")
            kernel_dll.CreateSymbolicLinkA(target, link_name, 0)

1381 1382 1383
    def check_in_static(self, main_program, base_map):
        for var in main_program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
1384 1385
                new_t = np.array(fluid.global_scope().find_var(
                    var.name).get_tensor())
1386 1387 1388
                base_t = base_map[var.name]
                self.assertTrue(np.array_equal(new_t, base_t))

H
hong 已提交
1389 1390

class TestProgramStateOldSaveSingleModel(unittest.TestCase):
1391

1392
    def set_place(self):
1393 1394
        return fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)
1395

H
hong 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
1409 1410 1411 1412 1413 1414
            ptb_model = PtbModel("ptb_model",
                                 hidden_size=hidden_size,
                                 vocab_size=vocab_size,
                                 num_layers=num_layers,
                                 num_steps=num_steps,
                                 init_scale=init_scale)
H
hong 已提交
1415

1416
            place = self.set_place()
H
hong 已提交
1417 1418
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
1419 1420 1421
            x = fluid.layers.data(name="x",
                                  shape=[-1, num_steps],
                                  dtype='int64')
H
hong 已提交
1422
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
1423 1424 1425 1426 1427 1428
            init_hidden = fluid.layers.data(name="init_hidden",
                                            shape=[1],
                                            dtype='float32')
            init_cell = fluid.layers.data(name="init_cell",
                                          shape=[1],
                                          dtype='float32')
H
hong 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
1456 1457
                init_cell_data = np.zeros((num_layers, batch_size, hidden_size),
                                          dtype='float32')
H
hong 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1476 1477
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
1478
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1479 1480 1481
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

1482 1483 1484 1485
            fluid.io.save_persistables(exe,
                                       "test_program_2",
                                       main_program,
                                       filename="model_1")
H
hong 已提交
1486 1487 1488 1489 1490 1491 1492

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

1493 1494
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
T
tianshuo78520a 已提交
1495
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            #fluid.load(test_program, "./test_1", None )
            program_state = fluid.load_program_state(
                os.path.join("test_program_2", "model_1"),
                var_list=fluid.io.get_program_persistable_vars(main_program))
            fluid.set_program_state(main_program, program_state)

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1506 1507
                    new_t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
H
hong 已提交
1508 1509 1510 1511 1512 1513 1514 1515
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            with self.assertRaises(ValueError):
                fluid.load_program_state(
                    os.path.join("test_program_2", "model_1"))

            with self.assertRaises(TypeError):
1516 1517 1518
                fluid.load_program_state(os.path.join("test_program_2",
                                                      "model_1"),
                                         var_list=["str"])
H
hong 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

            with self.assertRaises(RuntimeError):
                fluid.load_program_state(
                    os.path.join("test_program_2", "model_1"),
                    var_list=[
                        main_program.global_block().create_var(
                            name="fake_var_name", persistable=True)
                    ])


W
WeiXin 已提交
1529
class TestStaticSaveLoadPickle(unittest.TestCase):
1530

W
WeiXin 已提交
1531 1532 1533 1534 1535 1536
    def test_pickle_protocol(self):
        # enable static mode
        paddle.enable_static()

        with new_program_scope():
            # create network
1537 1538 1539
            x = paddle.static.data(name="static_save_load_large_x",
                                   shape=[None, 10],
                                   dtype='float32')
W
WeiXin 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548
            z = paddle.static.nn.fc(x, 10, bias_attr=False)
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()

            base_map = {}
            for var in prog.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
1549 1550
                    t = np.array(fluid.global_scope().find_var(
                        var.name).get_tensor())
W
WeiXin 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
                    # make sure all the paramerter or optimizer var have been update
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            path = os.path.join("test_static_save_load_pickle",
                                "pickle_protocol")

            with self.assertRaises(ValueError):
                paddle.fluid.save(prog, path, 2.0)

            with self.assertRaises(ValueError):
                paddle.fluid.save(prog, path, 1)

            with self.assertRaises(ValueError):
                paddle.fluid.save(prog, path, 5)

1567 1568 1569
            protocols = [
                2,
            ]
W
WeiXin 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
            if sys.version_info.major >= 3 and sys.version_info.minor >= 4:
                protocols += [3, 4]
            for protocol in protocols:
                paddle.fluid.save(prog, path, protocol)
                # set var to zero
                for var in prog.list_vars():
                    if isinstance(var, framework.Parameter) or var.persistable:
                        ten = fluid.global_scope().find_var(
                            var.name).get_tensor()
                        ten.set(np.zeros_like(np.array(ten)), place)

1581 1582
                        new_t = np.array(fluid.global_scope().find_var(
                            var.name).get_tensor())
W
WeiXin 已提交
1583 1584 1585 1586 1587 1588
                        self.assertTrue(np.sum(np.abs(new_t)) == 0)

                paddle.fluid.load(prog, path)

                for var in prog.list_vars():
                    if isinstance(var, framework.Parameter) or var.persistable:
1589 1590
                        new_t = np.array(fluid.global_scope().find_var(
                            var.name).get_tensor())
W
WeiXin 已提交
1591 1592 1593 1594
                        base_t = base_map[var.name]
                        self.assertTrue(np.array_equal(new_t, base_t))


H
hong 已提交
1595
if __name__ == '__main__':
1596
    paddle.enable_static()
H
hong 已提交
1597
    unittest.main()