test_static_save_load.py 55.7 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
18
import paddle
H
hong 已提交
19 20 21 22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.dygraph.nn import Embedding
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Adam
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope
26
from paddle.fluid.executor import global_scope
H
hong 已提交
27 28
import numpy as np
import six
29
import pickle
H
hong 已提交
30
import os
H
hong 已提交
31 32 33 34 35 36 37 38 39 40


class SimpleLSTMRNN(fluid.Layer):
    def __init__(self,
                 name_scope,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
H
hong 已提交
41
        super(SimpleLSTMRNN, self).__init__()
H
hong 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
        self._input = None
        self._num_steps = num_steps
        self.cell_array = []
        self.hidden_array = []

        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
            weight_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
            bias_1 = self.create_parameter(
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))

    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        self.cell_array = []
        self.hidden_array = []

        for i in range(self._num_layers):
            pre_hidden = fluid.layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

        res = []
        for index in range(self._num_steps):
            self._input = fluid.layers.slice(
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
            self._input = fluid.layers.reshape(
                self._input, shape=[-1, self._hidden_size])
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

                nn = fluid.layers.concat([self._input, pre_hidden], 1)
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
                fluid.layers.reshape(
                    self._input, shape=[1, -1, self._hidden_size]))
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell


class PtbModel(fluid.Layer):
    def __init__(self,
                 name_scope,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
H
hong 已提交
146
        super(PtbModel, self).__init__()
H
hong 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
            self.full_name(),
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
        self.embedding = Embedding(
            size=[vocab_size, hidden_size],
            dtype='float32',
            is_sparse=False,
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
        self.softmax_weight = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
        self.softmax_bias = self.create_parameter(
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def forward(self, input, label, init_hidden, init_cell):
        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)

        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)

        return loss, last_hidden, last_cell


214
class TestSaveLoadBase(unittest.TestCase):
H
hong 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
241
                name="x", shape=[-1, num_steps], dtype='int64')
H
hong 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
285
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
286 287
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
288
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
289 290 291 292 293 294 295
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.save(main_program, "./test_1")

            # set var to zero
            for var in main_program.list_vars():
296
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
297 298 299 300 301
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
302
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
303 304
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

H
hong 已提交
305
            fluid.load(main_program, "./test_1.pdparams", exe)
H
hong 已提交
306 307

            for var in main_program.list_vars():
308
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
309 310 311 312 313 314
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))


315
class TestSaveLoadPartial(unittest.TestCase):
H
hong 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
342
                name="x", shape=[-1, num_steps], dtype='int64')
H
hong 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
394
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
395 396
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
397
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
398 399 400 401 402 403 404
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.save(main_program, "./test_1")

            # set var to zero
            for var in main_program.list_vars():
405
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
406 407 408 409 410
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
411
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
412 413
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

H
hong 已提交
414
            fluid.load(test_program, "./test_1.pdopt", None)
H
hong 已提交
415 416

            for var in test_program.list_vars():
417
                if isinstance(var, framework.Parameter) or var.persistable:
H
hong 已提交
418 419 420 421
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))
H
hong 已提交
422
            fluid.load(test_program, "./test_1.pdmodel", None)
H
hong 已提交
423 424


425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
class TestSaveLoadSetStateDict(unittest.TestCase):
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
452
                name="x", shape=[-1, num_steps], dtype='int64')
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
499
                    # make sure all the paramerter or optimizer var have been update
500 501 502 503 504 505 506 507 508 509 510 511 512
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.save(main_program, "./test_1")

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
513
                    # make sure all the paramerter or optimizer var have been set to zero
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.load(main_program, "./test_1", exe)

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))


class TestProgramStatePartial(unittest.TestCase):
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
553
                name="x", shape=[-1, num_steps], dtype='int64')
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
608
                    # make sure all the paramerter or optimizer var have been update
609 610 611
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

612
            fluid.save(main_program, os.path.join('some_dir', 'test_1'))
613 614 615 616 617 618 619 620 621

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
622
                    # make sure all the paramerter or optimizer var have been set to zero
623 624 625
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            #fluid.load(test_program, "./test_1", None )
626 627
            program_state = fluid.load_program_state(
                os.path.join('some_dir', 'test_1'))
H
hong 已提交
628 629 630 631 632 633 634 635 636 637

            program_state_1 = fluid.load_program_state(
                os.path.join('some_dir', 'test_1.pdparams'))

            program_state_2 = fluid.load_program_state(
                os.path.join('some_dir', 'test_1.pdopt'))

            program_state_3 = fluid.load_program_state(
                os.path.join('some_dir', 'test_1.pdmodel'))

638 639 640 641 642 643 644 645 646
            fluid.set_program_state(test_program, program_state)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

H
hong 已提交
647 648 649 650 651 652 653 654
            # check 1
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
655
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_1)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            # check 2
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
675
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_2)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            # check 3
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
695
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
696 697 698 699 700 701 702 703 704 705 706
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.set_program_state(test_program, program_state_3)

            for var in test_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

class TestVariableInit(unittest.TestCase):
    def test_variable_init(self):

        x = fluid.data(name="x", shape=[10, 10], dtype='float32')
        y = fluid.layers.fc(x, 10)
        z = fluid.layers.fc(y, 10)

        place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        fluid.save(fluid.default_main_program(), "./test_path")

        def set_var(var, ndarray):
            t = var.get_tensor()
            p = t._place()
            if p.is_cpu_place():
                place = paddle.fluid.CPUPlace()
            elif p.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            else:
                p = paddle.fluid.core.Place()
                p.set_place(t._place())
                place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            t.set(ndarray, place)

        program = fluid.default_main_program()
        new_scope = fluid.core.Scope()

        place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        parameter_list = list(
            filter(fluid.io.is_parameter, program.list_vars()))

        fluid.core._create_loaded_parameter(parameter_list, new_scope,
                                            exe._default_executor)
        parameter_file_name = "./test_path.pdparams"
        with open(parameter_file_name, 'rb') as f:
            load_dict = pickle.load(f)

        for v in parameter_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, parameter_file_name)
            new_v = new_scope.find_var(v.name)
            set_var(new_v, load_dict[v.name])

        opt_list = list(
            filter(fluid.io.is_belong_to_optimizer, program.list_vars()))

        fluid.core._create_loaded_parameter(opt_list, new_scope,
                                            exe._default_executor)
        opt_file_name = "./test_path.pdopt"
        with open(opt_file_name, 'rb') as f:
            load_dict = pickle.load(f)

        for v in opt_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)

            new_v = new_scope.find_var(v.name)
            set_var(new_v, load_dict[v.name])

        base_map = {}
        for var in program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
                t = np.array(fluid.global_scope().find_var(var.name)
                             .get_tensor())
T
tianshuo78520a 已提交
780
                # make sure all the paramerter or optimizer var have been update
781 782 783 784 785 786 787 788 789 790
                base_map[var.name] = t

        for var in program.list_vars():
            if isinstance(var, framework.Parameter) or var.persistable:
                new_t = np.array(new_scope.find_var(var.name).get_tensor())
                base_t = base_map[var.name]

                self.assertTrue(np.array_equal(new_t, base_t))


H
hong 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
class TestLoadFromOldInterface(unittest.TestCase):
    def setUp(self):
        if os.path.exists("test_path.pdparams"):
            os.remove("test_path.pdparams")

    def test_load_from_old_interface(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_clone_program = fluid.default_main_program().clone()
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
871
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            #fluid.save(main_program, "./test_1")
            fluid.io.save_persistables(exe, "test_path", main_program)

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
886
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            fluid.load(main_program, "test_path", exe)

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    old_shape = np.array(ten).shape
                    new_shape = [e + 10 for e in old_shape]

                    var.desc.set_shape(new_shape)
            with self.assertRaises(RuntimeError):
                fluid.load(main_program, "test_path", exe)

T
tianshuo78520a 已提交
908
            # check unused parameter
H
hong 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986

            fluid.load(test_clone_program, "test_path", exe)


class TestLoadFromOldInterfaceSingleFile(unittest.TestCase):
    def test_load_from_old_interface(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
987
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            #fluid.save(main_program, "./test_1")
            fluid.io.save_persistables(
                exe, "test_path", main_program, filename="model_single")

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
1003
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            file_model_path = os.path.join("test_path", "model_single")
            fluid.load(main_program, file_model_path, exe,
                       fluid.io.get_program_persistable_vars(main_program))

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            # test exception
            # change shape
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    old_shape = np.array(ten).shape
                    new_shape = [e + 10 for e in old_shape]

                    var.desc.set_shape(new_shape)

            with self.assertRaises(RuntimeError):
                fluid.load(main_program, file_model_path, exe,
                           fluid.io.get_program_persistable_vars(main_program))

            fluid.io.save_params(
                exe, "test_path", main_program, filename="model_single")
            with self.assertRaises(RuntimeError):
                fluid.load(main_program, file_model_path, exe,
                           fluid.io.get_program_persistable_vars(main_program))

            # check when executor is None
            with self.assertRaises(ValueError):
                fluid.load(main_program, file_model_path, None,
                           fluid.io.get_program_persistable_vars(main_program))

            # check when var list is None
            with self.assertRaises(ValueError):
                fluid.load(main_program, file_model_path, exe, None)

            # check save params, load var_list = get_program_persistable_vars
            with self.assertRaises(RuntimeError):
                temp_var = framework.Variable(
                    main_program.global_block(),
                    shape=[1],
                    name="test_temp_var")
                all_var_list = list(main_program.list_vars())
                fluid.load(main_program, file_model_path, exe,
                           all_var_list + [temp_var])


H
hong 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
class TestProgramStateOldSave(unittest.TestCase):
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
1139
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.io.save_persistables(exe, "test_program_1", main_program)

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
1153
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            program_state = fluid.load_program_state("test_program_1")
            fluid.set_program_state(main_program, program_state)

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

1166 1167 1168 1169 1170
        with fluid.dygraph.guard(place):
            load_state = fluid.load_program_state("test_program_1")
            for k, v in load_state.items():
                self.assertTrue(np.array_equal(base_map[k], v))

H
hong 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

class TestProgramStateOldSaveSingleModel(unittest.TestCase):
    def test_ptb_rnn_cpu_float32(self):
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
        batch_num = 200

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                "ptb_model",
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            sgd = Adam(learning_rate=1e-3)
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64')
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)

            test_program = fluid.default_main_program().clone(for_test=True)

            add_1 = fluid.layers.fc(static_last_hidden,
                                    size=hidden_size,
                                    num_flatten_dims=2,
                                    bias_attr=False)

            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()

            out = exe.run(framework.default_startup_program())

            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
            for i in range(batch_num):
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]

            # get value before save
            main_program = framework.default_main_program()
            base_map = {}
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    t = np.array(fluid.global_scope().find_var(var.name)
                                 .get_tensor())
T
tianshuo78520a 已提交
1254
                    # make sure all the paramerter or optimizer var have been update
H
hong 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
                    self.assertTrue(np.sum(np.abs(t)) != 0)
                    base_map[var.name] = t

            fluid.io.save_persistables(
                exe, "test_program_2", main_program, filename="model_1")

            # set var to zero
            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    ten = fluid.global_scope().find_var(var.name).get_tensor()
                    ten.set(np.zeros_like(np.array(ten)), place)

                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
T
tianshuo78520a 已提交
1269
                    # make sure all the paramerter or optimizer var have been set to zero
H
hong 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
                    self.assertTrue(np.sum(np.abs(new_t)) == 0)

            #fluid.load(test_program, "./test_1", None )
            program_state = fluid.load_program_state(
                os.path.join("test_program_2", "model_1"),
                var_list=fluid.io.get_program_persistable_vars(main_program))
            fluid.set_program_state(main_program, program_state)

            for var in main_program.list_vars():
                if isinstance(var, framework.Parameter) or var.persistable:
                    new_t = np.array(fluid.global_scope().find_var(var.name)
                                     .get_tensor())
                    base_t = base_map[var.name]
                    self.assertTrue(np.array_equal(new_t, base_t))

            with self.assertRaises(ValueError):
                fluid.load_program_state(
                    os.path.join("test_program_2", "model_1"))

            with self.assertRaises(TypeError):
                fluid.load_program_state(
                    os.path.join("test_program_2", "model_1"),
                    var_list=["str"])

            with self.assertRaises(RuntimeError):
                fluid.load_program_state(
                    os.path.join("test_program_2", "model_1"),
                    var_list=[
                        main_program.global_block().create_var(
                            name="fake_var_name", persistable=True)
                    ])


H
hong 已提交
1303 1304
if __name__ == '__main__':
    unittest.main()