test_sparse_conv_op.py 9.4 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
18
from paddle import _C_ops, _legacy_C_ops
19 20
from paddle.fluid import core
from paddle.fluid.framework import _test_eager_guard
21
import paddle.incubate.sparse as sparse
22 23 24


class TestSparseConv(unittest.TestCase):
25

26 27 28
    def test_conv3d(self):
        with _test_eager_guard():
            kernel = [[[[[1], [1], [1]], [[1], [1], [1]], [[1], [1], [1]]]]]
29 30 31
            dense_kernel = paddle.to_tensor(kernel,
                                            dtype='float32',
                                            stop_gradient=False)
32 33 34 35
            dense_kernel = paddle.reshape(dense_kernel, [1, 3, 3, 1, 1])
            paddings = [0, 0, 0]
            strides = [1, 1, 1]
            dilations = [1, 1, 1]
36
            bias = [1]
37 38 39 40 41 42

            indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]]
            values = [1, 2, 3, 4]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
            dense_shape = [1, 1, 3, 4, 1]
43
            correct_out_values = [[5], [11]]
44 45
            sparse_input = core.eager.sparse_coo_tensor(indices, values,
                                                        dense_shape, False)
46
            out = paddle.incubate.sparse.nn.functional.conv3d(
47 48
                sparse_input,
                dense_kernel,
49
                bias=paddle.to_tensor(bias, dtype='float32'),
50 51 52 53 54
                stride=strides,
                padding=paddings,
                dilation=dilations,
                groups=1,
                data_format="NDHWC")
55
            out.backward(out)
Z
zhangkaihuo 已提交
56
            out = paddle.incubate.sparse.coalesce(out)
57
            assert np.array_equal(correct_out_values, out.values().numpy())
58

59 60 61 62 63 64 65
    def test_subm_conv3d(self):
        with _test_eager_guard():
            indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]]
            values = [[1], [2], [3], [4]]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
            dense_shape = [1, 1, 3, 4, 1]
66
            sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
67 68
                indices, values, dense_shape, stop_gradient=True)
            weight = paddle.randn((1, 3, 3, 1, 1), dtype='float32')
69
            y = paddle.incubate.sparse.nn.functional.subm_conv3d(
70
                sparse_x, weight, key='subm_conv')
71 72 73 74 75 76 77 78 79 80 81 82 83
            assert np.array_equal(sparse_x.indices().numpy(),
                                  y.indices().numpy())

    def test_Conv3D(self):
        with _test_eager_guard():
            #(4, non_zero_num), 4-D:(N, D, H, W)
            indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]]
            #(non_zero_num, C)
            values = [[1], [2], [3], [4]]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
            dense_shape = [1, 1, 3, 4, 1]
            correct_out_values = [[4], [10]]
84 85
            sparse_input = paddle.incubate.sparse.sparse_coo_tensor(
                indices, values, dense_shape, False)
86

87
            sparse_conv3d = paddle.incubate.sparse.nn.Conv3D(
88 89 90 91 92
                1, 1, (1, 3, 3), data_format='NDHWC')
            sparse_out = sparse_conv3d(sparse_input)
            #test errors
            with self.assertRaises(ValueError):
                #Currently, only support data_format='NDHWC'
93
                conv3d = paddle.incubate.sparse.nn.SubmConv3D(
94
                    1, 1, (1, 3, 3), data_format='NCDHW', key='subm_conv')
95 96 97 98 99 100 101 102 103

    def test_SubmConv3D(self):
        with _test_eager_guard():
            indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]]
            values = [[1], [2], [3], [4]]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
            dense_shape = [1, 1, 3, 4, 1]
            correct_out_values = [[4], [10]]
104 105
            sparse_input = paddle.incubate.sparse.sparse_coo_tensor(
                indices, values, dense_shape, False)
106

107
            subm_conv3d = paddle.incubate.sparse.nn.SubmConv3D(
108
                1, 1, (1, 3, 3), data_format='NDHWC', key='subm_conv')
109 110 111 112 113 114
            # test extra_repr
            print(subm_conv3d.extra_repr())

            sparse_out = subm_conv3d(sparse_input)
            # the output shape of subm_conv is same as input shape
            assert np.array_equal(indices, sparse_out.indices().numpy())
115

116 117 118
            #test errors
            with self.assertRaises(ValueError):
                #Currently, only support data_format='NDHWC'
119
                conv3d = paddle.incubate.sparse.nn.SubmConv3D(
120
                    1, 1, (1, 3, 3), data_format='NCDHW', key='subm_conv')
Z
zhangkaihuo 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

    def test_Conv3D_bias(self):
        with _test_eager_guard():
            paddle.seed(0)
            shape = [1, 4, 4, 4, 3]
            x = paddle.randn(shape)
            sp_x = x.to_sparse_coo(4)
            conv3d = paddle.nn.Conv3D(3, 2, 3, data_format='NDHWC')

            sp_conv3d = paddle.incubate.sparse.nn.Conv3D(3,
                                                         2,
                                                         3,
                                                         data_format='NDHWC')
            sp_conv3d.weight.set_value(
                paddle.to_tensor(conv3d.weight.numpy().transpose(2, 3, 4, 1,
                                                                 0)))
            sp_conv3d.bias.set_value(paddle.to_tensor(conv3d.bias.numpy()))

            x.stop_gradient = False
            out = conv3d(x)
            loss = out.mean()
            loss.backward()

            sp_x.stop_gradient = False
            sp_out = sp_conv3d(sp_x)
            dense_out = sp_out.to_dense()
            sp_loss = dense_out.mean()
            sp_loss.backward()
            assert np.allclose(out.numpy(),
                               dense_out.numpy(),
                               atol=1e-3,
                               rtol=1e-3)
            assert np.allclose(conv3d.weight.grad.numpy().transpose(
                2, 3, 4, 1, 0),
                               sp_conv3d.weight.grad.numpy(),
                               atol=1e-3,
                               rtol=1e-3)
            assert np.allclose(conv3d.bias.grad.numpy(),
                               sp_conv3d.bias.grad.numpy(),
                               atol=1e-5,
                               rtol=1e-5)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224


class TestStatic(unittest.TestCase):

    def test(self):
        paddle.enable_static()
        indices = paddle.static.data(name='indices',
                                     shape=[4, 4],
                                     dtype='int32')
        values = paddle.static.data(name='values',
                                    shape=[4, 1],
                                    dtype='float32')
        dense_shape = [1, 1, 3, 4, 1]
        sp_x = sparse.sparse_coo_tensor(indices, values, dense_shape)

        weight_shape = [1, 3, 3, 1, 1]
        weight = paddle.static.data(name='weight',
                                    shape=weight_shape,
                                    dtype='float32')
        bias_shape = [1]
        bias = paddle.static.data(name='bias',
                                  shape=bias_shape,
                                  dtype='float32')
        out = sparse.nn.functional.conv3d(sp_x,
                                          weight,
                                          bias,
                                          stride=1,
                                          padding=0,
                                          dilation=1,
                                          groups=1,
                                          data_format="NDHWC")
        sp_out = sparse.nn.functional.relu(out)
        out_indices = sp_out.indices()
        out_values = sp_out.values()
        out = sp_out.to_dense()

        exe = paddle.static.Executor()

        indices_data = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]]
        values_data = [[1.0], [2.0], [3.0], [4.0]]
        weight_data = np.array([[[[[1], [1], [1]], [[1], [1], [1]],
                                  [[1], [1], [1]]]]]).astype('float32')
        weight_data = weight_data.reshape(weight_shape)
        bias_data = np.array([1]).astype('float32')

        fetch = exe.run(feed={
            'indices': indices_data,
            'values': values_data,
            'weight': weight_data,
            'bias': bias_data
        },
                        fetch_list=[out, out_indices, out_values],
                        return_numpy=True)
        correct_out = np.array([[[[[5.0], [11.0]]]]]).astype('float64')
        correct_out_values = [[5.0], [11.0]]
        assert np.array_equal(correct_out, fetch[0])
        assert np.array_equal(correct_out_values, fetch[2])
        assert out_indices.dtype == paddle.int32
        paddle.disable_static()


if __name__ == "__main__":
    unittest.main()