Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ad0c106c
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ad0c106c
编写于
4月 02, 2022
作者:
Z
zhangkaihuo
提交者:
GitHub
4月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix sparse conv and verify sparse conv backward (#40961)
上级
9e764d82
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
137 addition
and
58 deletion
+137
-58
paddle/phi/kernels/sparse/convolution_grad_kernel.h
paddle/phi/kernels/sparse/convolution_grad_kernel.h
+17
-20
paddle/phi/kernels/sparse/cpu/convolution_grad_kernel.cc
paddle/phi/kernels/sparse/cpu/convolution_grad_kernel.cc
+18
-10
paddle/phi/kernels/sparse/gpu/convolution_grad_kernel.cu
paddle/phi/kernels/sparse/gpu/convolution_grad_kernel.cu
+26
-15
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
+21
-12
python/paddle/fluid/tests/unittests/test_sparse_conv_op.py
python/paddle/fluid/tests/unittests/test_sparse_conv_op.py
+54
-0
python/paddle/utils/code_gen/sparse_bw_api.yaml
python/paddle/utils/code_gen/sparse_bw_api.yaml
+1
-1
未找到文件。
paddle/phi/kernels/sparse/convolution_grad_kernel.h
浏览文件 @
ad0c106c
...
...
@@ -25,37 +25,37 @@ namespace sparse {
template
<
typename
T
,
typename
Context
>
void
Conv3dGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
DenseTensor
&
out_grad
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
const
int
groups
,
const
bool
subm
,
Dense
Tensor
*
x_grad
,
SparseCoo
Tensor
*
x_grad
,
DenseTensor
*
kernel_grad
);
template
<
typename
T
,
typename
Context
>
std
::
vector
<
DenseTensor
>
Conv3dGrad
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilation
s
,
const
std
::
vector
<
int
>&
stride
s
,
const
int
group
s
,
const
bool
subm
)
{
DenseTensor
x_grad
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
x
.
dtype
(),
{
1
},
x
.
layout
()))
;
std
::
tuple
<
SparseCooTensor
,
DenseTensor
>
Conv3dGrad
(
const
Context
&
dev_ct
x
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
kernel
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
padding
s
,
const
std
::
vector
<
int
>&
dilation
s
,
const
std
::
vector
<
int
>&
stride
s
,
const
int
groups
,
const
bool
subm
)
{
SparseCooTensor
x_grad
;
DenseTensor
kernel_grad
=
phi
::
Empty
<
Context
>
(
dev_ctx
,
DenseTensorMeta
(
kernel
.
dtype
(),
{
1
},
kernel
.
layout
()));
// TODO(zhangkaihuo): call InferMeta func here
Conv3dGradKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
rulebook
,
kernel
,
rulebook
,
out_grad
,
paddings
,
dilations
,
...
...
@@ -64,10 +64,7 @@ std::vector<DenseTensor> Conv3dGrad(const Context& dev_ctx,
subm
,
&
x_grad
,
&
kernel_grad
);
std
::
vector
<
DenseTensor
>
out
(
2
);
out
[
0
]
=
x_grad
;
out
[
1
]
=
kernel_grad
;
return
out
;
return
std
::
make_tuple
(
x_grad
,
kernel_grad
);
}
}
// namespace sparse
...
...
paddle/phi/kernels/sparse/cpu/convolution_grad_kernel.cc
浏览文件 @
ad0c106c
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/convolution_grad_kernel.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/sparse/cpu/convolution.h"
...
...
@@ -31,15 +32,15 @@ namespace sparse {
template
<
typename
T
,
typename
Context
>
void
Conv3dGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
DenseTensor
&
out_grad
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
const
int
groups
,
const
bool
subm
,
Dense
Tensor
*
x_grad
,
SparseCoo
Tensor
*
x_grad
,
DenseTensor
*
kernel_grad
)
{
const
auto
&
kernel_dims
=
kernel
.
dims
();
const
int
kernel_size
=
kernel_dims
[
0
]
*
kernel_dims
[
1
]
*
kernel_dims
[
2
];
...
...
@@ -73,11 +74,18 @@ void Conv3dGradKernel(const Context& dev_ctx,
int
half_kernel_size
=
kernel_size
/
2
;
auto
blas
=
phi
::
funcs
::
GetBlas
<
Context
,
T
>
(
dev_ctx
);
x_grad
->
Resize
(
x
.
non_zero_elements
().
dims
());
dev_ctx
.
Alloc
(
x_grad
,
x_grad
->
dtype
(),
sizeof
(
T
)
*
x_grad
->
numel
());
T
*
x_grad_values_ptr
=
x_grad
->
data
<
T
>
();
memset
(
x_grad_values_ptr
,
0
,
sizeof
(
T
)
*
x_grad
->
numel
());
DenseTensor
x_grad_indices
=
phi
::
EmptyLike
<
int
>
(
dev_ctx
,
x
.
non_zero_indices
());
DenseTensor
x_grad_values
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
x
.
non_zero_elements
());
T
*
x_grad_values_ptr
=
x_grad_values
.
data
<
T
>
();
memset
(
x_grad_values_ptr
,
0
,
sizeof
(
T
)
*
x_grad_values
.
numel
());
memset
(
d_x_features_ptr
,
0
,
sizeof
(
T
)
*
d_x_features
.
numel
());
phi
::
Copy
<
Context
>
(
dev_ctx
,
x
.
non_zero_indices
(),
dev_ctx
.
GetPlace
(),
false
,
&
x_grad_indices
);
x_grad
->
SetMember
(
x_grad_indices
,
x_grad_values
,
x
.
dims
(),
true
);
std
::
vector
<
int
>
offsets
(
kernel_size
+
1
),
counter
(
kernel_size
,
0
);
for
(
int
i
=
0
;
i
<
rulebook_len
;
i
++
)
{
...
...
@@ -97,12 +105,12 @@ void Conv3dGradKernel(const Context& dev_ctx,
phi
::
funcs
::
sparse
::
SubmPreProcess
<
T
,
Context
>
(
dev_ctx
,
x
,
kernel
,
out_grad
,
out_grad
.
non_zero_elements
()
,
in_channels
,
out_channels
,
half_kernel_size
,
kernel_grad
,
x_grad
);
&
x_grad_values
);
if
(
max_count
==
0
)
{
return
;
}
...
...
@@ -113,7 +121,7 @@ void Conv3dGradKernel(const Context& dev_ctx,
rulebook_len
,
in_channels
,
in_features_ptr
);
Gather
<
T
>
(
out_grad
.
data
<
T
>
(),
Gather
<
T
>
(
out_grad
.
non_zero_elements
().
data
<
T
>
(),
rulebook_ptr
+
rulebook_len
*
2
,
rulebook_len
,
out_channels
,
...
...
paddle/phi/kernels/sparse/gpu/convolution_grad_kernel.cu
浏览文件 @
ad0c106c
...
...
@@ -12,11 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "glog/logging.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/sparse/convolution_grad_kernel.h"
...
...
@@ -36,15 +38,15 @@ namespace sparse {
template
<
typename
T
,
typename
Context
>
void
Conv3dGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
rulebook
,
const
DenseTensor
&
kernel
,
const
DenseTensor
&
out_grad
,
const
DenseTensor
&
rulebook
,
const
SparseCooTensor
&
out_grad
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
dilations
,
const
std
::
vector
<
int
>&
strides
,
const
int
groups
,
const
bool
subm
,
Dense
Tensor
*
x_grad
,
SparseCoo
Tensor
*
x_grad
,
DenseTensor
*
kernel_grad
)
{
const
auto
&
kernel_dims
=
kernel
.
dims
();
const
int
kernel_size
=
kernel_dims
[
0
]
*
kernel_dims
[
1
]
*
kernel_dims
[
2
];
...
...
@@ -70,17 +72,25 @@ void Conv3dGradKernel(const Context& dev_ctx,
T
*
in_features_ptr
=
in_features
.
data
<
T
>
();
T
*
d_x_features_ptr
=
d_x_features
.
data
<
T
>
();
T
*
out_grad_features_ptr
=
out_grad_features
.
data
<
T
>
();
kernel_grad
->
ResizeAndAllocate
(
kernel_dims
);
*
kernel_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
kernel
);
T
*
d_kernel_ptr
=
kernel_grad
->
data
<
T
>
();
phi
::
funcs
::
SetConstant
<
Context
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
kernel_grad
,
static_cast
<
T
>
(
0.0
f
));
int
half_kernel_size
=
kernel_size
/
2
;
auto
blas
=
phi
::
funcs
::
GetBlas
<
Context
,
T
>
(
dev_ctx
);
x_grad
->
ResizeAndAllocate
(
x
.
non_zero_elements
().
dims
());
T
*
x_grad_values_ptr
=
x_grad
->
data
<
T
>
();
set_zero
(
dev_ctx
,
x_grad
,
static_cast
<
T
>
(
0.0
f
));
DenseTensor
x_grad_indices
=
phi
::
EmptyLike
<
int
>
(
dev_ctx
,
x
.
non_zero_indices
());
DenseTensor
x_grad_values
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
x
.
non_zero_elements
());
T
*
x_grad_values_ptr
=
x_grad_values
.
data
<
T
>
();
set_zero
(
dev_ctx
,
&
x_grad_values
,
static_cast
<
T
>
(
0.0
f
));
set_zero
(
dev_ctx
,
&
d_x_features
,
static_cast
<
T
>
(
0.0
f
));
phi
::
Copy
<
Context
>
(
dev_ctx
,
x
.
non_zero_indices
(),
dev_ctx
.
GetPlace
(),
false
,
&
x_grad_indices
);
x_grad
->
SetMember
(
x_grad_indices
,
x_grad_values
,
x
.
dims
(),
true
);
std
::
vector
<
int
>
offsets
(
kernel_size
+
1
),
counter
(
kernel_size
,
0
),
h_counter
(
rulebook_len
,
0
);
...
...
@@ -113,12 +123,12 @@ void Conv3dGradKernel(const Context& dev_ctx,
phi
::
funcs
::
sparse
::
SubmPreProcess
<
T
,
Context
>
(
dev_ctx
,
x
,
kernel
,
out_grad
,
out_grad
.
non_zero_elements
()
,
in_channels
,
out_channels
,
half_kernel_size
,
kernel_grad
,
x_grad
);
&
x_grad_values
);
if
(
max_count
==
0
)
{
return
;
}
...
...
@@ -140,11 +150,12 @@ void Conv3dGradKernel(const Context& dev_ctx,
GatherKernel
<
T
,
int
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
dev_ctx
.
stream
()
>>>
(
out_grad
.
data
<
T
>
(),
rulebook_ptr
+
rulebook_len
*
2
,
out_grad_features_ptr
,
rulebook_len
,
out_channels
);
dev_ctx
.
stream
()
>>>
(
out_grad
.
non_zero_elements
().
data
<
T
>
(),
rulebook_ptr
+
rulebook_len
*
2
,
out_grad_features_ptr
,
rulebook_len
,
out_channels
);
const
T
*
kernel_ptr
=
kernel
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
kernel_size
;
i
++
)
{
...
...
@@ -189,7 +200,7 @@ void Conv3dGradKernel(const Context& dev_ctx,
}
// 4. scatter
x_grad
->
ResizeAndAllocate
(
x
.
non_zero_elements
().
dims
());
//
x_grad->ResizeAndAllocate(x.non_zero_elements().dims());
DenseTensorMeta
index_meta
(
DataType
::
INT32
,
{
rulebook_len
},
DataLayout
::
NCHW
);
DenseTensor
out_index
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
index_meta
));
DenseTensor
unique_key
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
index_meta
));
...
...
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
浏览文件 @
ad0c106c
...
...
@@ -71,6 +71,10 @@ void TestConv3dBase(const std::vector<int>& indices,
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
paddle
::
platform
::
CPUPlace
())
.
get
());
dev_ctx_cpu
.
SetHostAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
paddle
::
platform
::
CPUPlace
())
.
get
());
dev_ctx_cpu
.
Init
();
const
int
in_channels
=
kernel_dims
[
3
];
...
...
@@ -132,19 +136,19 @@ void TestConv3dBase(const std::vector<int>& indices,
f_verify
(
out
.
non_zero_elements
().
data
<
T
>
(),
correct_out_features
);
if
(
backward
)
{
std
::
vector
<
DenseTensor
>
grads
=
std
::
tuple
<
SparseCooTensor
,
DenseTensor
>
grads
=
sparse
::
Conv3dGrad
<
T
>
(
dev_ctx_cpu
,
x_tensor
,
rulebook
,
kernel_tensor
,
out
.
non_zero_elements
(),
rulebook
,
out
,
paddings
,
dilations
,
strides
,
1
,
subm
);
f_verify
(
grads
[
0
]
.
data
<
T
>
(),
features_grad
);
f_verify
(
grads
[
1
]
.
data
<
T
>
(),
kernel_grad
);
f_verify
(
std
::
get
<
0
>
(
grads
).
non_zero_elements
()
.
data
<
T
>
(),
features_grad
);
f_verify
(
std
::
get
<
1
>
(
grads
)
.
data
<
T
>
(),
kernel_grad
);
}
}
...
...
@@ -233,23 +237,28 @@ void TestConv3dBase(const std::vector<int>& indices,
f_verify
(
h_features_tensor
.
data
<
T
>
(),
correct_out_features
);
if
(
backward
)
{
std
::
vector
<
DenseTensor
>
grads
=
std
::
tuple
<
SparseCooTensor
,
DenseTensor
>
grads
=
sparse
::
Conv3dGrad
<
T
>
(
dev_ctx_gpu
,
d_x_tensor
,
d_rulebook
,
d_kernel_tensor
,
d_out
.
non_zero_elements
(),
d_rulebook
,
d_out
,
paddings
,
dilations
,
strides
,
1
,
subm
);
DenseTensor
h_features_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
grads
[
0
]);
phi
::
Copy
(
dev_ctx_gpu
,
grads
[
0
],
phi
::
CPUPlace
(),
true
,
&
h_features_grad
);
DenseTensor
d_features_grad
=
std
::
get
<
0
>
(
grads
).
non_zero_elements
();
DenseTensor
d_kernel_grad
=
std
::
get
<
1
>
(
grads
);
DenseTensor
h_features_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
d_features_grad
);
phi
::
Copy
(
dev_ctx_gpu
,
d_features_grad
,
phi
::
CPUPlace
(),
true
,
&
h_features_grad
);
f_verify
(
h_features_grad
.
data
<
T
>
(),
features_grad
);
DenseTensor
h_kernel_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
grads
[
1
]);
phi
::
Copy
(
dev_ctx_gpu
,
grads
[
1
],
phi
::
CPUPlace
(),
true
,
&
h_kernel_grad
);
DenseTensor
h_kernel_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
d_kernel_grad
);
phi
::
Copy
(
dev_ctx_gpu
,
std
::
get
<
1
>
(
grads
),
phi
::
CPUPlace
(),
true
,
&
h_kernel_grad
);
f_verify
(
h_kernel_grad
.
data
<
T
>
(),
kernel_grad
);
}
#endif
...
...
python/paddle/fluid/tests/unittests/test_sparse_conv_op.py
0 → 100644
浏览文件 @
ad0c106c
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
paddle
import
_C_ops
from
paddle.fluid
import
core
from
paddle.fluid.framework
import
_test_eager_guard
class
TestSparseConv
(
unittest
.
TestCase
):
def
test_conv3d
(
self
):
with
_test_eager_guard
():
kernel
=
[[[[[
1
],
[
1
],
[
1
]],
[[
1
],
[
1
],
[
1
]],
[[
1
],
[
1
],
[
1
]]]]]
dense_kernel
=
paddle
.
to_tensor
(
kernel
,
dtype
=
'float32'
,
stop_gradient
=
False
)
dense_kernel
=
paddle
.
reshape
(
dense_kernel
,
[
1
,
3
,
3
,
1
,
1
])
paddings
=
[
0
,
0
,
0
]
strides
=
[
1
,
1
,
1
]
dilations
=
[
1
,
1
,
1
]
indices
=
[[
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
],
[
0
,
0
,
1
,
2
],
[
1
,
3
,
2
,
3
]]
values
=
[
1
,
2
,
3
,
4
]
indices
=
paddle
.
to_tensor
(
indices
,
dtype
=
'int32'
)
values
=
paddle
.
to_tensor
(
values
,
dtype
=
'float32'
)
dense_shape
=
[
1
,
1
,
3
,
4
,
1
]
correct_out_values
=
[[
4
],
[
10
]]
sparse_input
=
core
.
eager
.
sparse_coo_tensor
(
indices
,
values
,
dense_shape
,
False
)
out
=
_C_ops
.
final_state_sparse_conv3d
(
sparse_input
,
dense_kernel
,
paddings
,
dilations
,
strides
,
1
,
False
)
out
.
backward
(
out
)
#At present, only backward can be verified to work normally
#TODO(zhangkaihuo): compare the result with dense conv
print
(
sparse_input
.
grad
.
non_zero_elements
())
assert
np
.
array_equal
(
correct_out_values
,
out
.
non_zero_elements
().
numpy
())
#TODO: Add more test case
python/paddle/utils/code_gen/sparse_bw_api.yaml
浏览文件 @
ad0c106c
-
backward_api
:
conv3d_grad
forward
:
conv3d (Tensor x, Tensor kernel, int[] paddings, int[] dilations, int[] strides, int groups, bool subm) -> Tensor(out@SparseCooTensor), Tensor(rulebook@DenseTensor)
args
:
(Tensor x, Tensor kernel, Tensor rulebook, Tensor out_grad, int[] paddings, int[] dilations, int[] strides, int groups, bool subm)
output
:
Tensor(x_grad@
Dense
Tensor), Tensor(kernel_grad@DenseTensor)
output
:
Tensor(x_grad@
SparseCoo
Tensor), Tensor(kernel_grad@DenseTensor)
kernel
:
func
:
sparse_conv3d_grad
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录